Indoleamine 2,3-dioxygenase (IDO) is an immunoregulatory enzyme. It plays a key role in various malignancies, infection and autoimmune diseases. IDO induces immunosuppression through the depletion of tryptophan and its downstream metabolites. Hepatitis C virus (HCV) has infected more than 12 million individuals in Pakistan. The aim of the present study was to assess the expression and activity of IDO in HCV-infected patients. The functional enzymatic activity of IDO was measured by colorimetric assay. Serum samples from 100 HCV-infected patients were taken to examine IDO activity and samples from 100 healthy volunteers were used as controls. Liver sections from patients with HCV (n=35) and healthy controls (n=5) were used for immunohistochemical studies. Immunohistochemical analysis revealed that IDO was overexpressed in 28 of 35 (80%) cirrhotic liver samples, whereas 5 of 35 (14.2%) cases presented moderate and 2 of 35 (5.7%) cases presented mild expression of IDO. The enzymatic activity of IDO was significantly higher in the serum samples of HCV-infected patients as compared with those in the control. These data indicate that the expression of IDO correlated with the pathogenesis of disease. In summary, it is suggested that the high expression of IDO in the progressively cirrhotic livers of HCV-infected patients might contribute to the development of hepatocellular carcinoma. IDO may characterize a novel therapeutic target against HCV.
Nanomedicine application in cancer immunotherapy is currently one of the most challenging areas in cancer therapeutic intervention. Innovative solutions have been provided by nanotechnology to deliver cytotoxic agents to the cancer cells partially affecting the healthy cells of the body during the process. Nanoparticle-based drug delivery is an emerging approach to stimulate the immune responses against cancer. The inhibition of indoleamine 2,3-dioxygenase (IDO) is a pivotal area of research in cancer immunotherapy. IDO is a heme-containing immunosuppressive enzyme, which is responsible for the degradation of tryptophan while increasing the concentration of kynurenine metabolites. Various preclinical studies showed that IDO inhibition in certain diseases may result in significant therapeutic effects. Here, we provide a review of the natural and synthetic inhibitors of IDO. These inhibitors are classified according to their source, inhibitory concentrations, the chemical structure, and the mechanism of action. Tumor-targeted chemotherapy is an advanced technique and has more advantages as compared to the conventional chemotherapy. Search for more efficient and less toxic nanoparticles in conjunction with compounds to inhibit IDO is still an area of interest for several research groups worldwide, especially revealing to be an extensive and a promising area in cancer therapeutic innovations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.