Although there has been growing interest in mood-related neural alterations in women in the initial weeks postpartum, recent work has demonstrated that postpartum depression often lingers for months or years following birth. However, research evaluating the impact of depression on maternal brain function during mother-infant interactions in the late postpartum period is lacking. The current study tested the hypothesis that depressive symptoms at 12-months postpartum are associated with neural alterations in affective and social neural regions, using near-infrared spectroscopy during in vivo mother-infant interactions. Participants were 23 birth mothers of 12-month-old infants (60% boys). While undergoing near-infrared spectroscopy, mothers engaged in an ecologically valid interactive task in which they looked at an age-appropriate book with their infants. Mothers also reported on their depressive symptoms in the past week and were rated on their observed levels of maternal sensitivity during mother-infant play. Greater depressive severity at 12-months postpartum was related to lower connectivity between the right temporoparietal junction and the lateral prefrontal cortex, but greater connectivity between the right temporoparietal junction and anterior medial prefrontal cortex during mother-infant interaction. Given the putative functions of these neural regions within the maternal brain network, our findings suggest that in the context of depression, postpartum mothers' mentalizing about her infants' thoughts and feelings may be related to lower ability to express and regulate her own emotions, but greater ability to engage in emotional bonding with her infant. Future work should explore how connectivity among these regions is associated with longitudinal changes in maternal behavior, especially in the context of changes in mothers' depressive symptoms (e.g., with treatment) over time.
Background In the first years of life, in which self-regulation occurs via external means, mother-child synchronization of positive affect (PA) facilitates regulation of child homeostatic systems. Mother-child affective synchrony may contribute to mother-child synchronization of neural systems, but limited research has explored this possibility. Methods Participants were 41 healthy mother-child dyads (56% girls; Mage=24.76 months; SD=8.77 months, Range=10 to 42 months). Mothers’ and children’s brain activity were assessed simultaneously using near-infrared spectroscopy while engaging in dyadic play. Mother and child PA during play were coded separately to characterize periods in which mothers and children (1) matched on high PA (2) matched on low/no PA or (3) showed a mismatch in PA. Models evaluated moment-to-moment correlations between affective matching and neural synchrony in mother-child dyads. Results Greater positive affective synchrony, in which mother and child showed similarly high levels of PA but not similarly low levels of PA, was related to greater synchrony in medial and lateral frontal and temporoparietal regions. Age moderated associations between mother and child neural activity, but only during moments of high PA state matching. Conclusions Positive, synchronous mother-child interactions may foster greater neural responding in affective and social regions important for self-regulation and interpersonal bonds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.