This paper presents the results of a feasibility study for the design of multi-band tunable metamaterials based on the use of micro-split SRR (MSSRR) structures. In this study, we have designed and constructed a conventional split-ring resonator (SRR) unit cell (type A) and two modified SRR unit cells having the same design parameters except that they contain two (type B) or four (type C) additional micro-splits on the outer square ring, along the arm having the main split. Transmission characteristics of the resulting MSSRR cells are obtained both numerically and experimentally and compared to those of the ordinary SRR unit cell. It is observed that the presence of the additional micro-splits leads to the increase of resonance frequency by substantial amounts due to the series capacitance effect. Next, we have designed and constructed 2 x 2 homogeneous arrays of magnetic resonators which consist of the same type of cells (either A, or B, or C). Such MSSRR blocks are found to provide only a single frequency band of operation around the magnetic resonance frequency of the related unit cell structure. Finally, we have designed and constructed 2 x 2 and 3 x 2 inhomogeneous arrays which contain columns of different types of metamaterial unit cells. We have shown that these inhomogeneous arrays provide two or three different frequency bands of operations due to the use of different magnetic resonators together. The number of additional micro-splits in a given MSSRR cell can be interactively controlled by various switching technologies to modify the overall metamaterial topology for the purpose of activating different sets of multiple resonance frequencies. In this context, use of electrostatically actuated RF MEMS switches is discussed, and their implementation is suggested as a future work, to control the states of micro-splits in large MSSRR arrays to realize tunable multi-band metamaterials.
Absorbing infrared radiation efficiently is important for critical applications such as thermal imaging and infrared spectroscopy. Common infrared absorbing materials are not standard in Si VLSI technology. We demonstrate ultra-broadband mid-infrared absorbers based purely on silicon. Broadband absorption is achieved by the combined effects of free carrier absorption, and vibrational and plasmonic absorption resonances. The absorbers, consisting of periodically arranged silicon gratings, can be fabricated using standard optical lithography and deep reactive ion etching techniques, allowing for cost-effective and wafer-scale fabrication of micro-structures. Absorption wavebands in excess of 15 micrometers (5–20 μm) are demonstrated with more than 90% average absorptivity. The structures also exhibit broadband absorption performance even at large angles of incidence (θ = 50°), and independent of polarization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.