In this study, a fast and easy-to-use capillary-type microdevice for competitive bioassay is proposed. The device is composed of polydimethylsiloxane (PDMS) microchannel arrays that separately immobilize polyethylene glycol (PEG) coating, which contained graphene oxide (GO)-analyte conjugates and fluorescently-labelled receptor proteins. The working principle of the device involved the spontaneous dissolution of the PEG coating, subsequent mixing and reaction with analyte to give fluorescence response, triggered by the capillary action-mediated introduction of a sample solution. For principle verification, a competitive biotin assay was successfully demonstrated within 20 s in a single-step operation by detecting the change in fluorescence via microscopy.
An immunoassay, which is an indispensable analytical method both in biological research and in medical fields was successfully integrated into a "single-step" by developing a microdevice composed of a graphene oxide (GO)-containing hydrogel and a poly (dimethylsiloxane) (PDMS) microchannel array with a polyethylene glycol (PEG) coating containing a fluorescently-labelled antibody. Here we used 2-hydroxyethylmethacrylate (HEMA) as a monomer that is easily, and homogeneously, mixed with GO to synthesize the hydrogel. The fluorescence quenching and size separation functions were then optimized by controlling the ratios of HEMA and GO. Free fluorescently-labelled antibody was successfully separated from the immunoreaction mixture by the hydrogel network structure, and the fluorescence was subsequently quenched by GO. In comparison to the previously reported immunoassay system using GO, the present system achieved a very high fluorescence resonance energy transfer (FRET) efficiency (∼90%), due to the use of direct adsorption of the fluorescently-labelled antibody to the GO surface; in contrast, the former reported method relied on indirect adsorption of the fluorescently-labelled antibody via immunocomplex formation at the GO surface. Finally, the single-step immunoassay microdevice was made by combining the developed hydrogel and the PDMS microchannel with a coating containing the fluorescently-labelled antibody, and successfully applied for the single-step analysis of IgM levels in diluted human serum by simple introduction of the sample via capillary action.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.