The ultrasonic degradation of methylene blue was carried out in the absence and presence of dimethyl sulfoxide (DMSO) as a radical scavenger for various frequencies, and the effects of DMSO addition on the degradation rate constant estimated by assuming first-order kinetics were investigated. The degradation reaction rate decreased with DMSO addition, and hydroxyl radicals were observed to play important roles in the degradation of methylene blue. However, the degradation reaction did not stop with DMSO addition, and the degradation rate constant in the presence of DMSO was not affected by ultrasonic frequency.
The ultrasonic degradation of methylene blue at a frequency of 490 kHz was carried out in the absence and presence of TiO2 or Al2O3 particle, and the effects of amounts of particle on the enhancement of degradation rate constant estimated by assuming first-order-kinetics were investigated. The degradation reaction was enhanced by particle addition, and the apparent degradation rate constant is proportional to the increase in amount of particle. In addition, the constant of proportionality is not influenced by degraded material and ultrasonic frequency. However, particle type influences the constant of proportionality, and the value of TiO2 particle is about 6 times as large as that of Al2O3 particle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.