Heart tissue possesses complex structural organization on multiple scales, from macro- to nano-, but nanoscale control of cardiac function has not been extensively analyzed. Inspired by ultrastructural analysis of the native tissue, we constructed a scalable, nanotopographically controlled model of myocardium mimicking the in vivo ventricular organization. Guided by nanoscale mechanical cues provided by the underlying hydrogel, the tissue constructs displayed anisotropic action potential propagation and contractility characteristic of the native tissue. Surprisingly, cell geometry, action potential conduction velocity, and the expression of a cell–cell coupling protein were exquisitely sensitive to differences in the substratum nanoscale features of the surrounding extracellular matrix. We propose that controlling cell–material interactions on the nanoscale can stipulate structure and function on the tissue level and yield novel insights into in vivo tissue physiology, while providing materials for tissue repair.
We present a simple yet robust method for fabricating angled, hierarchically patterned high-aspect-ratio polymer nanohairs to generate directionally sensitive dry adhesives. The slanted polymeric nanostructures were molded from an etched polySi substrate containing slanted nanoholes. An angled etching technique was developed to fabricate slanted nanoholes with flat tips by inserting an etch-stop layer of silicon dioxide. This unique etching method was equipped with a Faraday cage system to control the ionincident angles in the conventional plasma etching system. The polymeric nanohairs were fabricated with tailored leaning angles, sizes, tip shapes, and hierarchical structures. As a result of controlled leaning angle and bulged flat top of the nanohairs, the replicated, slanted nanohairs showed excellent directional adhesion, exhibiting strong shear attachment (Ϸ26 N/cm 2 in maximum) in the angled direction and easy detachment (Ϸ2.2 N/cm 2 ) in the opposite direction, with a hysteresis value of Ϸ10. In addition to single scale nanohairs, monolithic, micro-nanoscale combined hierarchical hairs were also fabricated by using a 2-step UV-assisted molding technique. These hierarchical nanoscale patterns maintained their adhesive force even on a rough surface (roughness <20 m) because of an increase in the contact area by the enhanced height of hierarchy, whereas simple nanohairs lost their adhesion strength. To demonstrate the potential applications of the adhesive patch, the dry adhesive was used to transport a large-area glass (47.5 ؋ 37.5 cm 2 , second-generation TFT-LCD glass), which could replace the current electrostatic transport/ holding system with further optimization.biomimetics ͉ gecko ͉ angled etching ͉ slanted nanohair ͉ hierarchical nanohair A dhesive are used in many aspects of the daily life. With increasing demands for various applications in the industry, new adhesives have been developed that use thermoplastic, UV or light curing, rubbery and pressure-sensitive materials (1). In general, such man-made adhesives have high (sometimes extremely strong) adhesion strength but are not easily detached. Furthermore, they are seldom reusable because the surfaces are quickly contaminated by adhering materials because of their tacky nature. In contrast, nature has created its own adhesives with unique structures and functions. For example, mussels generate specialized adhesive proteins, allowing for strong adhesion to wet surfaces, which is not easily achievable with man-made adhesives (2).In addition, dry adhesion mechanism in gecko lizards has attracted much attention because it provides strong, yet reversible attachment against surfaces of varying roughness and orientation. Such unusual adhesion capability is attributed to arrays of millions of fine microscopic foot hairs (setae), splitting into hundreds of smaller, nanoscale ends (spatulae), which form intimate contact to various surfaces by van der Waals forces with strong adhesion (Ϸ10
A simple yet robust method for large‐area patterning of polymer films—capillary force lithography—is presented here. This method, which combines the essential features of imprint lithography and microcontact printing, allows the replication of features down to 100 nm. The Figure shows a typical pattern.
Directed differentiation of embryonic stem (ES) cells is useful for creating models of human disease and could potentially generate a wide array of functional cell types for therapeutic applications. Methods to differentiate ES cells often involve the formation of cell aggregates called embryoid bodies (EBs), which recapitulate early stages of embryonic development. EBs are typically made from suspension cultures, resulting in heterogeneous structures with a wide range of sizes and shapes, which may influence differentiation. Here, we use microfabricated cell-repellant poly(ethylene glycol) (PEG) wells as templates to initiate the formation of homogenous EBs. ES cell aggregates were formed with controlled sizes and shapes defined by the geometry of the microwells. EBs generated in this manner remained viable and maintained their size and shape within the microwells relative to their suspension counterparts. Intact EBs could be easily retrieved from the microwells with high viability (>95%). These results suggest that the microwell technique could be a useful approach for in vitro studies involving ES cells and, more specifically, for initiating the differentiation of EBs of greater uniformity based on controlled microenvironments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.