MYC is one of the most important oncogenes and is overexpressed in the majority of cancers. Gquadruplexes are noncanonical four-stranded DNA secondary structures that have emerged as attractive cancer-specific molecular targets for drug development. The G-quadruplex formed in the proximal promoter region of the MYC oncogene (MycG4) has been shown to be a transcriptional silencer that is amenable to small molecule targeting for MYC suppression. Indenoisoquinolines
Investigation of the alkaloids from Peganum harmala seeds yielded two pairs of unique racemic pyrroloindole alkaloids, (±)-peganines A–B (1–2); two rare thiazole derivatives, peganumals A–B (3–4); six new β-carboline alkaloids, pegaharmines F–K (5–10); and 12 known analogues. Their structures, including stereochemistry, were elucidated through spectroscopic analyses, quantum chemistry calculations, and single-crystal X-ray diffraction. Notably, the incorporation of pyrrole and indole moieties in peganines A–B, thiazole fragments in peganumals A–B, and a C-1 α,β-unsaturated ester motif in pegaharmine F (5) are all rare, and their presence in the genus Peganum were demonstrated for the first time. All isolates were tested for antiproliferative activities against the HL-60, PC-3, and SGC-7901 cancer cell lines, and compounds 9, 11, 12, and 13 exhibited moderate cytotoxicity against HL-60 cancer cell lines with IC50 values in the range of 4.36–9.25 μM.
In this study, we screened 17 medicinal plants for binding activity to G-quadruplex d(TTGGGTT)4 by (1)H NMR spectroscopy and found that the crude extract of Peganum harmala L. seeds showed the most potential binding activity. Subsequently, (1)H NMR- and bioassay-guided isolation of the extract of P. harmala L. was performed to obtain four pairs of partially racemized β-carboline alkaloids, pegaharmines A-D (1-4). Their structures and absolute configurations were determined by extensive NMR analyses, X-ray crystallography, ECD calculations, and CD exciton chirality approaches. Interestingly, pegaharmine D (4), which showed the strongest G-quadruplex interaction, exhibited significant cytotoxic activity against three cancer cell lines. This work contributed a practical strategy for the discovery of novel G-quadruplex ligands from natural products and provided potential insights for using β-carboline alkaloids as anticancer lead compounds specifically targeting G-quadruplexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.