The SELDI-TOF-MS technology seems to be ideally suitable for the mass screening of peptides and proteins in tears. This highly sensitive approach dramatically reduces the analysis time and provides protein profiles with great mass accuracy. Thus, it may become a very useful tool in the search for potential biomarkers for diagnosis and new therapeutics in ocular diseases such as dry eye.
Antiphospholipid antibodies (aPLs) cause severe autoimmune disease characterized by vascular pathologies and pregnancy complications. Here, we identify endosomal lysobisphosphatidic acid (LBPA) presented by the CD1d-like endothelial protein C receptor (EPCR) as a pathogenic cell surface antigen recognized by aPLs for induction of thrombosis and endosomal inflammatory signaling. The engagement of aPLs with EPCR-LBPA expressed on innate immune cells sustains interferon- and toll-like receptor 7–dependent B1a cell expansion and autoantibody production. Specific pharmacological interruption of EPCR-LBPA signaling attenuates major aPL-elicited pathologies and the development of autoimmunity in a mouse model of systemic lupus erythematosus. Thus, aPLs recognize a single cell surface lipid–protein receptor complex to perpetuate a self-amplifying autoimmune signaling loop dependent on the cooperation with the innate immune complement and coagulation pathways.
We could demonstrate that complex IgG antibody patterns against retina exist in aqueous humor. The significant differences in the antibody pattern of the glaucoma group compared with the nonglaucoma group in aqueous humor confirm the results of previous studies using sera of glaucoma patients. These differences in antibody patterns might be further evidence for an autoimmune involvement in the pathogenesis of some glaucoma patients.
Complex IgG antibody patterns against optic nerve antigens can be reproducibly identified in the serum of study populations from the United States and Germany. In both cohorts, patients with glaucoma have characteristic differences in serum autoantibody repertoires from those in control subjects. A newly described autoantibody to alpha-fodrin found in other neurodegenerative diseases such as Alzheimer's, further implicate a role for autoimmunity and the neurodegenerative processes in glaucoma. The high correspondence of the autoantibody patterns found in the study populations from different continents provides further evidence that serum autoantibody patterns may be useful biomarkers for glaucoma detection or for determining prognosis in future studies by means of pattern-matching algorithms.
Background and purpose: Mitochondrial aldehyde dehydrogenase (ALDH-2) has been shown to provide a pathway for bioactivation of organic nitrates and to be prone to desensitization in response to highly potent, but not to less potent, nitrates. We therefore sought to support the hypothesis that bioactivation by ALDH-2 critically depends on the number of nitrate groups within the nitrovasodilator. Experimental approach: Nitrates with one (PEMN), two (PEDN; GDN), three (PETriN; glyceryl trinitrate, GTN) and four (pentaerithrityl tetranitrate, PETN) nitrate groups were investigated. Vasodilatory potency was measured in isometric tension studies using isolated aortic segments of wild type (WT) and ALDH-2 À/À mice. Activity of the cGMP-dependent kinase-I (reflected by levels of phosphorylated VAsodilator Stimulated Phosphoprotein, P-VASP) was quantified by Western blot analysis, mitochondrial dehydrogenase activity by HPLC. Following incubation of isolated mitochondria with PETN, PETriNchromophore and PEDN, metabolites were quantified using chemiluminescence nitrogen detection and mass spectrometry. Key results: Compared to WT, vasorelaxation in response to PETN, PETriN and GTN was attenuated about 10fold in ALDH-2 À/À mice, identical to WT vessels preincubated with inhibitors of ALDH-2. Reduced vasodilator potency correlated with reduced P-VASP formation and diminished biotransformation of the tetranitrate-and trinitrate-compounds. None of these findings were observed for PEDN, GDN and PEMN. Conclusions and implications: Our results support the crucial role of ALDH-2 in bioactivating highly reactive nitrates like GTN, PETN and PETriN. ALDH-2-mediated relaxation by organic nitrates therefore depends mainly on the number of nitrate groups. Less potent nitrates like PEDN, GDN and PEMN are apparently biotransformed by other pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.