Polypropylene/organoclay nanocomposites modified with different maleic anhydride grafted polypropylene (PPgMA) compatibilizers were compounded on a twin-screw extruder. The effectiveness of the feeding sequence and compatibilizer type toward the dispersion of organoclay into PP matrix was critically studied. The composites prepared with side feed appeared to provide better dispersion and modulus improvement over that with hopper feed. The effect of PPgMA compatibilizers, including PB3150, PB3200, PB3000, and E43, with a wide range of maleic anhydride (MA) content and molecular weight was also examined. The structure was investigated with X-ray diffraction and transmission electron microscopy. The relative complex viscosity curves also revealed a systematic trend with the extent of exfoliation and showed promise for quantifying the hybrid structure of the nanocomposites. Mechanical properties were determined by dynamical mechanical analysis and tensile and impact tests. Maleated polypropylene with low-melt flow index and moderate MA content enhanced clay dispersion and resulted in significant improvement in tensile modulus of the nanocomposites.
Maleic anhydride grafted polypropylene (PP-g-MA) and organically modified clay composites were prepared in a plasticorder. PP-g-MAs, including Polybond PB3150, Polybond PB3200, Polybond PB3000, and Epolene E43, with a wide range of maleic anhydride (MA) concentrations and molecular weights were used. The structure was investigated with X-ray diffraction (XRD) and transmission electron microscopy (TEM). PP-g-MA compatibilizers gave rise to similar degrees of dispersion beyond the weight ratio of 3/1, with the exception of E43, which had the highest MA content and the lowest molecular weight. The thermal instability and high melt index were responsible for the ineffective modification by E43. Furthermore, PP-g-MA with a lower molecular weight and a higher melt index had to be compounded at a lower mixing temperature to achieve a reasonable level of torque for clay dispersion. Polypropylene/organoclay nanocomposites were then modified with different levels of PP-g-MA compatibilizers with a twin-screw extruder. The polypropylene/E43/clay system, as shown by XRD patterns and TEM observations, yielded the poorest clay dispersion of the compatibilizers under investigation. The curves of the relative complex viscosity also revealed a systematic trend with the extent of exfoliation and showed promise for quantifying the hybrid structure of the nanocomposites. The mechanical properties and thermal stability were determined by dynamical mechanical analysis and thermogravimetric analysis, respectively. Although PP-g-MA with a lower molecular weight led to better clay dispersion in the polypropylene nanocomposites, it caused deterioration in both the mechanical and thermal properties of the hybrid systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.