In this paper, we propose a novel simultaneous localization and mapping algorithm, R-LIO, which combines rotating multi-line lidar and inertial measurement unit. R-LIO can achieve real-time and high-precision pose estimation and map-building. R-LIO is mainly composed of four sequential modules, namely nonlinear motion distortion compensation module, frame-to-frame point cloud matching module based on normal distribution transformation by self-adaptive grid, frame-to-submap point cloud matching module based on line and surface feature, and loop closure detection module based on submap-to-submap point cloud matching. R-LIO is tested on public datasets and private datasets, and it is compared quantitatively and qualitatively to the four well-known methods. The test results show that R-LIO has a comparable localization accuracy to well-known algorithms as LIO-SAM, FAST-LIO2, and Faster-LIO in non-rotating lidar data. The standard algorithms cannot function normally with rotating lidar data. Compared with non-rotating lidar data, R-LIO can improve localization and mapping accuracy in rotating lidar data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.