Z-DNA, a left-handed duplex, has been shown to form in vivo and regulate expression of the corresponding gene. However, its biological roles have not been satisfactorily understood, mainly because Z-DNA is easily converted to the thermodynamically favorable B-DNA. Here we present a new idea to form stable Z-DNA under normal physiological conditions and achieve detailed analysis on its fundamental features. Simply by mixing two complementary minicircles of single-stranded DNA with no chemical modification, the hybridization spontaneously induces topological constraint which twines one-half of the double-stranded DNA into stable Z-DNA. The formation of Z-conformation with high stability has been proved by using circular dichroism spectroscopy, Z-DNAspecific antibody binding assay, nuclease digestion, etc. Even at a concentration of MgCl 2 as low as 0.5 mM, Z-DNA was successfully obtained, avoiding the use of high salt conditions, limited sequences, ancillary additives, or chemical modifications, criteria which have hampered Z-DNA research. The resultant Z-DNA has the potential to be used as a canonical standard sample in Z-DNA research. By using this approach, further developments of Z-DNA science and its applications become highly promising.
The exploitation and research of deep-sea hydrothermal vent has been an issue of great interest in ocean research in recent years. Laser-induced breakdown spectroscopy (LIBS) has great potential for ocean application due to the capabilities of stand-off, multiphase, and multielement analysis. In this work, a newly developed compact 4000 m rated LIBS system (LIBSea) is introduced with preliminary results of sea trials. The underwater system consists of an Nd:YAG single-pulsed laser operating at 1064 nm, an optical fiber spectrometer, an optics module, and an electronic controller module. The whole system is housed in an L800 mm×ϕ258 mm pressure housing with an optical window on the end cap. It was deployed on the remote operated vehicle Faxian on the research vessel Kexue, and in June 2015 was successfully applied for hydrothermal field measurements at the Manus area. The obtained results are shown that the LIBS system is capable of detecting elements Li, Na, K, Ca, and Mg in the hydrothermal area. Profiles of LIBS signals of elements K and Ca have also been obtained during the sea trial. The results show that the K emission line is gradually broadened with depth from sea surface to sea floor (1800 m or so); the K intensity shows a hump shape with maximum value at about 1050 m. The Ca emission line is rapidly broadened below 400 m and slowly narrowed to the sea floor; the Ca intensity shows no obvious change below 400 m and increases continuously to sea floor. A very interesting finding is that the small fluctuations of intensity profile curve of Ca show a degree of correlation with seawater temperature change. The sea trial results prove the performance of LIBSea. After further optimization, it is hoped to apply the LIBS system to the in situ mineral deposits and hydrothermal vent fluid detection in deep sea.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.