Freestanding paper-like electrode materials have trigged significant research interest for their practical application in flexible and lightweight energy storage devices. In this work, we reported a new type of flexible nanohybrid paper electrode based on full inkjet printing synthesis of a freestanding graphene paper (GP) supported three-dimensional (3D) porous graphene hydrogel (GH)-polyaniline (PANI) nanocomposite, and explored its practical application in flexible all-solid-state supercapacitor (SC). The utilization of 3D porous GH scaffold to load nanostructured PANI dramatically enhances the electrical conductivity, the specific capacitance and the cycle stability of the GH-PANI nanocomposite. Additionally, GP can intimately interact with GH-PANI through π-π stacking to form a unique freestanding GP supported GH-PANI nanocomposite (GH-PANI/GP) with distinguishing mechanical, electrochemical and capacitive properties. These exceptional attributes, coupled with the merits of full inkjet printing strategy, lead to the formation of a high-performance binder-free paper electrode for flexible and lightweight SC application. The flexible all-solid-state symmetric SC based on GH-PANI/GP electrode and gel electrolyte exhibits remarkable mechanical flexibility, high cycling performance and acceptable energy density of 24.02 Wh kg(-1) at a power density of 400.33 W kg(-1). More importantly, the proposed simple and scale-up full inkjet printing procedure for the preparation of freestanding GP supported 3D porous GH-PANI nanocomposite is a modular approach to fabricate other graphene-based nanohybrid papers with tailorable properties and optimal components.
Two types of 3D architectured electrodes, i.e., graphene wrapped nickel foam Ni/GF/MnO2 and Ni/GF/polypyrrole (PPy), were successfully fabricated for high performance flexible solid-state asymmetric supercapacitors.
In this work, we report the development of well-ordered hydrogenated CoMoO (H-CoMoO) and hydrogenated FeO (H-FeO) nanoplate arrays on 3D graphene foam (GF) and explore their practice application as binder-free electrodes in assembling flexible all-solid-state asymmetric supercapacitor (ASC) devices. Our results show that the monolithic 3D porous GF prepared by solution casting method using Ni foam template possesses large surface area, superior electrical conductivity, and sufficient surface functional groups, which not only facilitate in situ growth of CoMoO and FeO nanoplates but also contribute the double-layer capacitance of the resultant supercapacitor. The well-ordered pseudocapacitive metal oxide nanoplate arrays standing up on 3D GF scaffold can provide efficient space and shorten the length for electrolyte diffusion from the outer to the inner region of the electrode material for Faradaic energy storage. Furthermore, one of our major findings is that the introduction of oxygen vacancies in CoMoO and FeO nanoplates by hydrogenation treatment can increase their electronic conductivity as well as improve their donor density and surface properties, which gives rise to a substantially improved electrochemical performance. Benefiting from the synergistic contributions of different components in the nanohybrid electrode, the resultant flexible ASC device with GF/H-CoMoO as the positive electrode and GF/H-FeO as the negative electrode achieves a wide operation voltage of 1.5 V and a maximum volumetric specific capacitance of 3.6 F cm, which is two times larger than that of the Ni/GF/CoMoO//Ni/GF/FeO device (1.8 F cm), and the rate capability is up to 70% as the current density increases from 2 to 200 mA cm. Moreover, the Ni/GF/H-CoMoO//Ni/GF/H-FeO device also exhibits a high energy density of 1.13 mWh cm and a high power density of 150 mW cm, good mechanical flexibility with the decrease in capacitance of less than 4% after being bent inward to different angles and inward to 90° 200 times, and good cycling stability of 93.1% capacitance retention after 5000 cycles.
Nanocelluloses (NC) are nature-based sustainable biomaterials, which not only possess cellulosic properties but also have the important hallmarks of nanomaterials, such as large surface area, versatile reactive sites or functionalities, and scaffolding stability to host inorganic nanoparticles. This class of nanomaterials offers new opportunities for a broad spectrum of applications for clean water production that were once thought impractical. This Review covers substantial discussions based on evaluative judgments of the recent literature and technical advancements in the fields of coagulation/flocculation, adsorption, photocatalysis, and membrane filtration for water decontamination through proper understanding of fundamental knowledge of NC, such as purity, crystallinity, surface chemistry and charge, suspension rheology, morphology, mechanical properties, and film stability. To supplement these, discussions on low-cost and scalable NC extraction, new characterizations including solution small-angle X-ray scattering evaluation, and structure− property relationships of NC are also reviewed. Identifying knowledge gaps and drawing perspectives could generate guidance to overcome uncertainties associated with the adaptation of NC-enabled water purification technologies. Furthermore, the topics of simultaneous removal of multipollutants disposal and proper handling of post/spent NC are discussed. We believe NC-enabled remediation nanomaterials can be integrated into a broad range of water treatments, greatly improving the cost-effectiveness and sustainability of water purification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.