Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. Abstract. We extend the definition of a convex risk measure to a conditional framework where additional information is available. We characterize these risk measures through the associated acceptance sets and prove a representation result in terms of conditional expectations. As an example we consider the class of conditional entropic risk measures. A new regularity property of conditional risk measures is defined and discussed. Finally we introduce the concept of a dynamic convex risk measure as a family of successive conditional convex risk measures and characterize those satisfying some natural time consistency properties. Terms of use: Documents in
Option pricing models are calibrated to market data of plain vanillas by minimization of an error functional. From the economic viewpoint, there are several possibilities to measure the error between the market and the model. These different specifications of the error give rise to different sets of calibrated model parameters and the resulting prices of exotic options vary significantly. These price differences often exceed the usual profit margin of exotic options.We provide evidence for this calibration risk in a time series of DAX implied volatility surfaces from April 2003to March 2004. We analyze in the Heston and in the Bates model factors influencing these price differences of exotic options and finally recommend an error functional. Moreover, we determine the model risk of these two stochastic volatility models for the time series and consider its relation to calibration risk.
This paper analyzes empirical market utility functions and pricing kernels derived from the DAX and DAX option data for three market regimes. A consistent parametric framework of stochastic volatility is used. All empirical market utility functions show a region of risk proclivity that is reproduced by adopting the hypothesis of heterogeneous individual investors whose utility functions have a switching point between bullish and bearish attitudes. The inverse problem of finding the distribution of individual switching points is formulated in the space of stock returns by discretization as a quadratic optimization problem. The resulting distributions vary over time and correspond to different market regimes.JEL classification: G12, G13, C50
The calibration of option pricing models leads to the minimization of an error functional. We show that its usual specification as a root mean squared error implies fluctuating exotics prices and possibly wrong prices. We propose a simple and natural method to overcome these problems, illustrate drawbacks of the usual approach and show advantages of our method. To this end, we calibrate the Heston model to a time series of DAX implied volatility surfaces and then price cliquet options.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.