Plant architecture has clear agronomic and economic implications for crops such as wheat and barley, as it is a critical factor for determining grain yield. Despite this, only limited molecular information is available about how grain-bearing inflorescences, called spikes, are formed and maintain their regular, distichous pattern. Here we elucidate the molecular and hormonal role of Six-rowed spike 2 (Vrs2), which encodes a SHORT INTERNODES (SHI) transcriptional regulator during barley inflorescence and shoot development. We show that Vrs2 is specifically involved in floral organ patterning and phase duration by maintaining hormonal homeostasis and gradients during normal spike development and similarly influences plant stature traits. Furthermore, we establish a link between the SHI protein family and sucrose metabolism during organ growth and development that may have implications for deeper molecular insights into inflorescence and plant architecture in crops.
Root size and architecture are important crop plant traits, as they determine access to water and soil nutrients. The plant hormone cytokinin is a negative regulator of root growth and branching. Here, we generated transgenic barley () plants with an enlarged root system by enhancing cytokinin degradation in roots to explore the potential of cytokinin modulations in improving root functions. This was achieved through root-specific expression of a gene. Enhanced biomass allocation to roots did not penalize shoot growth or seed yield, indicating that these plants were not source limited. In leaves of transgenic lines, the concentrations of several macroelements and microelements were increased, particularly those with low soil mobility (phosphorus, manganese, and zinc). Importantly, seeds contained up to 44% more zinc, which is beneficial for human nutrition. Transgenic lines also demonstrated dampened stress responses to long-term drought conditions, indicating lower drought sensitivity. Taken together, this work demonstrates that root engineering of cereals is a promising strategy to improve nutrient efficiency, biofortification, and drought tolerance.
Plants have evolved a unique plasticity of their root system architecture to flexibly exploit heterogeneously distributed mineral elements from soil. Local high concentrations of nitrate trigger lateral root initiation in adult shoot-borne roots of maize (Zea mays) by increasing the frequency of early divisions of phloem pole pericycle cells. Gene expression profiling revealed that, within 12 h of local high nitrate induction, cell cycle activators (cyclin-dependent kinases and cyclin B) were up-regulated, whereas repressors (Kip-related proteins) were down-regulated in the pericycle of shoot-borne roots. In parallel, a ubiquitin protein ligase S-Phase Kinase-Associated Protein1-cullin-F-box protein S-Phase Kinase-Associated Protein 2B -related proteasome pathway participated in cell cycle control. The division of pericycle cells was preceded by increased levels of free indole-3-acetic acid in the stele, resulting in DR5-red fluorescent protein-marked auxin response maxima at the phloem poles. Moreover, laser-capture microdissectionbased gene expression analyses indicated that, at the same time, a significant local high nitrate induction of the monocot-specific PIN-FORMED9 gene in phloem pole cells modulated auxin efflux to pericycle cells. Time-dependent gene expression analysis further indicated that local high nitrate availability resulted in PIN-FORMED9-mediated auxin efflux and subsequent cell cycle activation, which culminated in the initiation of lateral root primordia. This study provides unique insights into how adult maize roots translate information on heterogeneous nutrient availability into targeted root developmental responses.
Plant hormones (PH) adjust plant growth to environmental conditions such as nutrient availability. Although responses of individual PHs to growth-determining nutrient supplies have been reported, little is known about simultaneous dynamics in the metabolism of different PH species. Brassica napus seedlings were grown under increasing supply of B, and LC-MS/MS was used to characterize bioactive forms of different PH species together with several of their precursors, storage and inactivated forms. Increasing shoot B concentrations in response to B supply were accompanied by decreasing concentrations of abscisic acid (ABA) and indole-3-acetic acid (IAA), which appeared to be synthesized under B deficiency mainly via indole-3-acetonitrile (IAN). By contrast, shoot B concentrations correlated closely with cytokinins, and the B-dependent growth response appeared to be triggered primarily by de-novo synthesis of cytokinins and by re-routing less active towards highly active forms of cytokinin. Also gibberellin biosynthesis strongly increased with B supply, in particular gibberellin species from the non-13-hydroxylation pathway. The brassinosteroid castasterone appeared to support shoot growth primarily at suboptimal B nutrition. These results indicate that a variable B nutritional status causes coordinated changes in PH metabolism as prerequisite for an adjusted growth response.
Wheat (Triticum aestivum L.) is one of the major staple food crops worldwide. Despite efforts in improving wheat quality, micronutrient levels are still below the optimal range for human nutrition. In particular, zinc (Zn) deficiency is a widespread problem in human nutrition in countries relying mainly on a cereal diet; hence improving Zn accumulation in grains is an imperative need. This study was designed to understand the genetic architecture of Zn grain concentrations in wheat grains. We performed a genome-wide association study (GWAS) for grain Zn concentrations in 369 European wheat genotypes, using field data from 3 years. The complete wheat panel was genotyped by high-density arrays of single nucleotide polymorphic (SNP) markers (90k iSELECT Infinium and 35k Affymetrix arrays) resulting in 15,523 polymorphic markers. Additionally, a subpanel of 183 genotypes was analyzed with a novel 135k Affymetrix marker array resulting in 28,710 polymorphic SNPs for high-resolution mapping of the potential genomic regions. The mean grain Zn concentration of the genotypes ranged from 25.05–52.67 μg g-1 dry weight across years with a moderate heritability value. Notably, 40 marker-trait associations (MTAs) were detected in the complete panel of varieties on chromosomes 2A, 3A, 3B, 4A, 4D, 5A, 5B, 5D, 6D, 7A, 7B, and 7D. The number of MTAs in the subpanel was increased to 161 MTAs whereas the most significant and consistent associations were located on chromosomes 3B (723,504,241–723,611,488 bp) and 5A (462,763,758–466,582,184 bp) having major effects. These genomic regions include newly identified putative candidate genes, which are related to Zn uptake and transport or represent bZIP and mitogen-activated protein kinase genes. These findings provide the basis for understanding the genetic background of Zn concentration in wheat grains that in turn may help breeders to select high Zn-containing genotypes to improve human health and grain quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.