A CE-inductively coupled plasma mass spectrometric (CE-ICP-MS) method for iodine and bromine speciation analysis is described. Samples containing ionic iodine (I(-) and IO(3)(-)) and bromine (Br(-) and BrO(3)(-)) species are subjected to electrophoretic separation before injection into the microconcentric nebulizer (CEI-100). The separation has been achieved in a 50 cm length x 75 microm id fused-silica capillary. The electrophoretic buffer used is 10 mmol/L Tris (pH 8.0), while the applied voltage is set at -8 kV. Detection limits are 1 and 20-50 ng/mL for various I and Br compounds, respectively, based on peak height. The RSD of the peak areas for seven injections of 0.1 microg/mL I(-), IO(3)(-) and 1 microg/mL Br(-), BrO(3)(-) mixture is in the range of 3-5%. This method has been applied to determine various iodine and bromine species in NIST SRM 1573a Tomato Leaves reference material and a salt and seaweed samples obtained locally. A microwave-assisted extraction method is used for the extraction of these compounds. Over 87% of the total iodine and 83% of the total bromine are extracted using a 10% m/v tetramethylammonium hydroxide (TMAH) solution in a focused microwave field within a period of 10 min. The spike recoveries are in the range of 94-105% for all the determinations. The major species of iodine and bromine in tomato leaves, salt, and seaweed are Br(-), IO(3)(-), I(-), and Br(-), respectively.
An inductively coupled plasma mass spectrometer (ICP-MS) was used as an ion chromatographic detector for the speciation of iodine and bromine. Gradient elution using NH4NO3 at pH 10 allowed the chromatographic separation of ionic iodine (I − and IO3 − ) and bromine (Br − and BrO3 − ) species in less than 8 min. Effluents from the ion-exchange column were delivered to the nebulization system of ICP-MS for the determination of I and Br. The potentially interfering 38 Ar 40 ArH + and 40 Ar 40 ArH + at the bromine masses m/z 79 and 81 were significantly reduced in intensity (by approximately two orders of magnitude) by using 0.6 mL min −1 O2 as a reactive cell gas in the dynamic reaction cell (DRC). Moreover, the signal-to-background ratio at iodine mass m/z 127 increased significantly when O2 was used as the reaction gas. The detection limits were in the range of 0.001 -0.002 and 0.03 -0.04 ng mL −1 for various I and Br compounds, respectively, based on the peak height. The relative standard deviation of the peak areas for five injections of a 2 ng mL −1 I − , IO3 − and 20 ng mL −1 Br − , BrO3 − mixture was in the range of 3 -4%. The concentrations of I and Br compounds have been determined in selected water and urine samples. The spike recoveries were in the range of 94 -102% for all of the determinations. This method has also been applied to determine various I and Br compounds in an NIST RM 8435 whole-milk powder reference material and a seaweed sample obtained locally. A microwave-assisted extraction method was used to extract these compounds, which were quantitatively leached with a 10% mass/volume (m/v) tetramethylammonium hydroxide (TMAH) solution in a focused microwave field within a period of 6 min. The major components of I and Br in milk powder and seaweed were I − and Br − .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.