In this paper, we analyze the influence of surface effects including residual surface stress, surface piezoelectric and surface elasticity on the buckling behavior of piezoelectric nanobeams by using the Timoshenko beam theory and surface piezoelectricity model. The critical electric potential for buckling of piezoelectric nanobeams with different boundary condition is obtained analytically. From the results, it is found that the surface piezoelectric reduces the critical electric potential. However, a positive residual surface stress increases the critical electric potential. In addition, the shear deformation reduces the critical electric potential, and the influence of shear deformation become more significant for a stubby piezoelectric nanobeam.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.