Abstract. Rainfall-runoff response in temperate humid headwater catchments is mainly controlled by hydrological processes at the hillslope scale. Applied tracer experiments with fluorescent dye and salt tracers are well known tools in groundwater studies at the large scale and vadose zone studies at the plot scale, where they provide a means to characterise subsurface flow. We extend this approach to the hillslope scale to investigate saturated and unsaturated flow paths concertedly at a forested hillslope in the Austrian Alps. Dye staining experiments at the plot scale revealed that cracks and soil pipes function as preferential flow paths in the fine-textured soils of the study area, and these preferential flow structures were active in fast subsurface transport of tracers at the hillslope scale. Breakthrough curves obtained under steady flow conditions could be fitted well to a one-dimensional convection-dispersion model. Under natural rainfall a positive correlation of tracer concentrations to the transient flows was observed. The results of this study demonstrate qualitative and quantitative effects of preferential flow features on subsurface stormflow in a temperate humid headwater catchment. It turns out that, at the hillslope scale, the interactions of structures and processes are intrinsically complex, which implies that attempts to model such a hillslope satisfactorily require detailed investigations of effective structures and parameters at the scale of interest.
Abstract. Soil water content and matric potential are central hydrological state variables. A large variety of automated probes and sensor systems for state monitoring exist and are frequently applied. Most applications solely rely on the calibration by the manufacturers. Until now, there has been no commonly agreed-upon calibration procedure. Moreover, several opinions about the capabilities and reliabilities of specific sensing methods or sensor systems exist and compete. A consortium of several institutions conducted a comparison study of currently available sensor systems for soil water content and matric potential under field conditions. All probes were installed at 0.2 m b.s. (metres below surface), following best-practice procedures. We present the set-up and the recorded data of 58 probes of 15 different systems measuring soil moisture and 50 further probes of 14 different systems for matric potential. We briefly discuss the limited coherence of the measurements in a cross-correlation analysis. The measuring campaign was conducted during the growing period of 2016. The monitoring data, results from pedophysical analyses of the soil and laboratory reference measurements for calibration are published in Jackisch et al. (2018, https://doi.org/10.1594/PANGAEA.892319).
Rainfall-runoff response in temperate humid headwater catchments is mainly controlled by hydrological processes at the hillslope scale. Applied tracer experiments with fluorescent dye and salt tracers are well known tools in groundwater studies at the large scale and vadose zone studies at the plot scale, where they provide a means to characterise subsurface flow. We extend this approach to the hillslope scale to investigate saturated and unsaturated flow paths concertedly at a forested hillslope in the Austrian Alps. Dye staining experiments at the plot scale revealed that cracks and soil pipes function as preferential flow paths in the fine-textured soils of the study area, and these preferential flow structures were active in fast subsurface transport of tracers at the hillslope scale. Breakthrough curves obtained under steady flow conditions could be fitted well to a one-dimensional convection-dispersion model. Under natural rainfall a positive correlation of tracer concentrations to the transient flows was observed. The results of this study demonstrate qualitative and quantitative effects of preferential flow features on subsurface stormflow in a temperate humid headwater catchment. It turns out that, at the hillslope scale, the interactions of structures and processes are intrin-sically complex, which implies that attempts to model such a hillslope satisfactorily require detailed investigations of effective structures and parameters at the scale of interest.
Sarkar et al. (this issue) proposed a laboratory measurement method for obtaining the hydraulic conductivity of soil at near‐saturated moisture conditions, bridging the gap between measurements that can be obtained with the evaporation method in the medium dry region, and measurements of the saturated conductivity by traditional methods. The method is based on a tension infiltration on a limited part of the surface of a soil sample and drainage of the sample at the same tension, leading to a divergent flow field. Despite equal tensions at top and bottom of the sample (“unit gradient”), the water flux in the sample is smaller than the corresponding value of the soil hydraulic conductivity at the applied tension. From numerical analysis of the flow problem, they concluded that unsaturated conductivity can be obtained with an accuracy of 10% for all texture classes of the USDA soil texture triangle. In this paper, we test the methodology for three different soil types using an appropriate apparatus. The results match well with independent saturated conductivity measurements on the wet side, and with unsaturated conductivity measurements in the medium moisture range that were obtained with the evaporation method.
Failure of natural slopes may result in considerable damage to both human health and real estate properties. The conditions “necessary” for a slope to fail have been investigated thoroughly in the past. Additional work is still necessary regarding the causes that trigger a slope to move and that may in the long run even be helpful to predict the failure of a slope. We conducted experiments to investigate the influence of various groundwater conditions on slope stability. Our results showed that the position of the groundwater table and especially a variation in pore water pressure greatly affect the slope stability under loaded conditions. Moreover the results showed that slope failures are preceded by an abrupt decrease in pore water pressure. We suggest that a monitoring of the fluctuation of pore water pressure in a real slope may give an indication of its inherent stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.