In this study, a series of new concepts and improved genetic operators of a genetic algorithm (GA) was proposed and applied to solve mobile robot (MR) path planning problems in dynamic environments. The proposed method has two superiorities: fast convergence towards the global optimum and the feasibility of all solutions in the population. Path planning aims to provide an optimal path from a starting location to a target location, preventing collision or so-called obstacle avoidance. Although GAs have been widely used in optimization problems and can obtain good results, conventional GAs have some weaknesses in an obstacle environment, such as infeasible paths. The main ideas in this paper are visible space, matrix coding and new mutation operators. In order to demonstrate the superiority of this method, three different obstacle environments have been used and an experiment is conducted. This algorithm is effective in both static and dynamic environments.
Ionospheric scintillation refers to rapid fluctuations in signal amplitude/phase when radio signals propagate through irregularities in the ionosphere. The occurrence of ionospheric scintillation can severely degrade the Global Navigation Satellite System (GNSS) receiver tracking loop performance, with consequential effects on positioning. Under strong scintillation conditions, receivers can even lose lock on satellites, which poses serious threats to safety-critical GNSS applications and precise positioning. The characteristics of intensity fading on Global Positioning System (GPS) L1 C/A signals during the peak of the last solar cycle at the low latitude station of Presidente Prudente (Lat. 22.12°S, Long. 51.41°W, Magnetic Lat. 12.74°S) are investigated. The results show that the occurrence of scintillation at this station is extremely frequent. An analysis of the fading events revealed an inverse relationship between fading depth and duration. Mathematical models are built to investigate and explain the statistical relationship between intensity fading and the commonly used amplitude scintillation index S4. Then the GPS receiver tracking loop performance is studied in relation to fading. A conclusion can be drawn that both fading depth and duration can affect the tracking loop performance, but the tracking error variance is more strongly related to fading speed, defined as the ratio of fading depth to fading duration. The proposed study is of great significance for better understanding the ionospheric scintillation intensity fading characteristics at low latitudes. It can also contribute to the research on the effects of scintillation on GNSS as well as support the design and development of scintillation robust GNSS receivers.
Ionospheric scintillation refers to rapid and random fluctuations in radio frequency signal intensity and phase, which occurs more frequently and severely at high latitudes under strong solar and geomagnetic activity. As one of the most challenging error sources affecting Global Navigation Satellite System (GNSS), scintillation can significantly degrade the performance of GNSS receivers, thereby leading to increased positioning errors. This study analyzes Global Positioning System (GPS) scintillation data recorded by two ionospheric scintillation monitoring receivers operational, respectively, in the Arctic and northern Canada during a geomagnetic storm in 2019. A novel approach is proposed to calculate 1-s scintillation indices. The 1-s receiver tracking error variances are then estimated, which are further used to mitigate the high latitude scintillation effects on GPS Precise Point Positioning. Results show that the 1-s scintillation indices can describe the signal fluctuations under scintillation more accurately. With the mitigation approach, the 3D positioning error is greatly reduced under scintillation analyzed in this study. Additionally, the 1-s tracking error variance achieves a better performance in scintillation mitigation compared with the previous approach which exploits 1-min tracking error variance estimated by the commonly used 1-min scintillation indices. This work is relevant for a better understanding of the high latitude scintillation effects on GNSS and is also beneficial for developing scintillation mitigation tools for GNSS positioning.
Ionospheric scintillation has a great impact on radio propagation and electronic system performance, thus is extensively studied currently. The influence of scintillation on Global Navigation Satellite System (GNSS) is particularly evident, making GNSS an effective medium to study characteristics of scintillation. Ionospheric scintillation varies greatly in relation with temporal and spatial distribution. In this paper, both temporal and spatial characteristics of scintillation are investigated based on Macquarie Island’s GNSS scintillation data collected from 2011 to 2015. Experiments demonstrate that occurrence rates of amplitude scintillation have a close relationship with solar activity, while phase scintillation is more likely to be generated by geomagnetic activity. In addition, scintillation distribution behaviors related to elevation and azimuth angles are statistically analyzed for both amplitude and phase scintillation. The proposed work is valuable for a deeper understanding of theoretical mechanisms of ionospheric scintillation in this region, and provides a reference for GNSS applications in certain regions around sub-Antarctica.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.