Compared with conventional reactors that are designed by traditional micromachining technology, the use of 3D-printing technology to manufacture multichannel large-volume microchannel reactors as reaction equipment to remove low-concentration NOX by the wet method is simple and convenient, and the processing cost is low. The results showed that when the concentration of NO was 400 ppm, the mixed solution of (NH2)2CO mass fraction of 3% and H2O2 concentration of 0.5 mol/L was used, and the flow rates of gas and liquid were 100 mL/min, respectively, under the experimental conditions of pH = 11, solution temperature of 20 °C and 500 mL solution recycling for 20 min, the best removal effect of NOX was achieved, and the removal efficiency was 100%. When the O2 content in the flue gas was increased and the number and length of microchannels were increased, the NOX removal efficiency increased accordingly, which was conducive to the rapid and efficient reaction. The application of the microchannel reactor presents a new method for improving the air quality and reducing environmental pollution in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.