In order to reduce property loss and casualties from level crossing accidents, it is crucial to develop effective accident prediction models that are capable of providing effective information of accident frequency and severity given a vector of covariates. In the present research, a set of statistical count and categorical data models are developed; they are not only able to evaluate accident frequency and severity but also capable of exploring the potential risk factors that are responsible for traffic accidents. Using the data set collected by the Ministry of Transportation and Communication (MOTC) in 1998, which consist of both historical accident data and railway level crossing related data, the empirical study identifies a vector of factors that are significantly associated with accident frequency and/or severity. Finally, the developed accident frequency and severity models are also employed to provide the evaluation of black spots and countermeasure effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.