Fluid and volume therapy is an important cornerstone of treating critically ill patients in the intensive care unit and in the operating room. New findings concerning the vascular barrier, its physiological functions, and its role regarding vascular leakage have lead to a new view of fluid and volume administration. Avoiding hypervolemia, as well as hypovolemia, plays a pivotal role when treating patients both perioperatively and in the intensive care unit. The various studies comparing restrictive vs. liberal fluid and volume management are not directly comparable, do not differ (in most instances) between colloid and crystalloid administration, and mostly do not refer to the vascular barrier's physiologic basis. In addition, very few studies have analyzed the use of advanced hemodynamic monitoring for volume management.This article summarizes the current literature on the relevant physiology of the endothelial surface layer, discusses fluid shifting, reviews available research on fluid management strategies and the commonly used fluids, and identifies suitable variables for hemodynamic monitoring and their goal-directed use.
PARP regulates the pulmonary NO pathway during endotoxemia via AP-1 and not NF-kappaB. Thus, pharmacological inhibition of PARP might be an effective intervention to prevent endotoxin-induced lung injury, interrupting the vicious circle of NO production and PARP activation.
Permeability of the endothelial barrier to large molecules plays a pivotal role in the manifestation of early acute lung injury. We present a novel and sensitive technique that brings microanatomical visualization and quantification of microvascular permeability in line. White New Zealand rabbits were anesthetized and ventilated mechanically. Rabbit serum albumin (RSA) was labeled with colloidal gold particles. We quantified macromolecular leakage of gold-labeled RSA and thickening of the gas exchange distance by electron microscopy, taking into account morphology of microvessels. The control group receiving a saline solution represented a normal gas exchange barrier without extravasation of gold-labeled albumin. Infusion of lipopolysaccharide (LPS) resulted in a significant displacement of gold-labeled albumin into pulmonary cells, the lung interstitium, and even the alveolar space. Correspondingly, intravital fluorescence microscopy and digital image analysis indicated thickening of width of alveolar septa. The findings were accompanied by a deterioration of alveolo-arterial oxygen difference, whereas wet/dry ratio and albumin concentration in the bronchoalveolar lavage fluid failed to detect that early stage of pulmonary edema. Inhibition of the nuclear enzyme poly(ADP-ribose) synthetase by 3-aminobenzamide prevented LPS-induced microvascular injury. To summarize: colloidal gold particles visualized by standard electron microscopy are a new and very sensitive in vivo marker of microvascular permeability in early acute lung injury. This technique enabling detailed microanatomical and quantitative pathophysiological characterization of edema formation can form the basis for evaluating novel treatment strategies against acute lung injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.