It is well known that rational interpolation sometimes gives better approximations than polynomial interpolation, especially for large sequences of points, but it is difficult to control the occurrence of poles. In this paper we propose and study a family of barycentric rational interpolants that have no poles and arbitrarily high approximation orders, regardless of the distribution of the points. The family includes a construction of Berrut as a special case.
Barycentric coordinates for triangles are commonly used in computer graphics, geometric modeling, and other computational sciences because they provide a convenient way to linearly interpolate the data that is given at the corners of a triangle. The concept of barycentric coordinates can also be extended in several ways to convex polygons with more than three vertices, but most of these constructions break down when used in the nonconvex setting.
Mean value coordinates
offer a choice that is not limited to convex configurations, and we show that they are in fact well-defined for arbitrary planar polygons without self-intersections. Besides their many other important properties, these coordinate functions are smooth and allow an efficient and robust implementation. They are particularly useful for interpolating data that is given at the vertices of the polygons and we present several examples of their application to common problems in computer graphics and geometric modeling.
Barycentric coordinates are unique for triangles, but there are many possible generalizations to convex polygons. In this paper we derive sharp upper and lower bounds on all barycentric coordinates over convex polygons and use them to show that all such coordinates have the same continuous extension to the boundary. We then present a general approach for constructing such coordinates and use it to show that the Wachspress, mean value, and discrete harmonic coordinates all belong to a unifying one-parameter family of smooth three-point coordinates. We show that the only members of this family that are positive, and therefore barycentric, are the Wachspress and mean value ones. However, our general approach allows us to construct several sets of smooth five-point coordinates, which are positive and therefore barycentric.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.