Ionizing radiation (IR) induces p53-dependent apoptosis in radiosensitive tissues, suggesting that p53 is a determinant of radiation syndromes. In fact, p53-deficient mice survive doses of IR that cause lethal hematopoietic syndrome in wild-type animals. Surprisingly, p53 deficiency results in sensitization of mice to higher doses of IR, causing lethal gastro-intestinal (GI) syndrome. While cells in the crypts of p53-wild-type epithelium undergo prolonged growth arrest after irradiation, continuous cell proliferation ongoing in p53-deficient epithelium correlates with accelerated death of damaged cells followed by rapid destruction of villi and accelerated lethality. p21-deficient mice are also characterized by increased sensitivity to GI syndrome-inducing doses of IR. We conclude that p53/p21-mediated growth arrest plays a protective role in the epithelium of small intestine after severe doses of IR. Pharmacological inhibition of p53 by a small molecule that can rescue from lethal hematopoietic syndrome has no effect on the lethality from gastro-intestinal syndrome, presumably because of a temporary and reversible nature of its action.
Oxidative stress and mitochondrial dysfunction are considered to be major contributing factors in the development and progression of many neurodegenerative diseases. Naringenin (NAR) is an abundant flavanone in the Citrus genus and has been found to exert antioxidant, anticarcinogenic and antimutagenic effects. However, the potential underlying mechanism of its antioxidant effects remains unclear. In the present study, the authors investigated the antioxidant effect of NAR on neurons in vitro. Neurons isolated from the brains of Sprague-Dawley rats were randomly divided into a control group, model group, NAR-L group, NAR-M group and NAR-H group. The model group received hypoxia and re-oxygenation treatment, and the NAR-L, NAR-M and NAR-H groups received 20, 40 and 80 µM NAR, respectively. The levels of reactive oxygen species (ROS) in each group were detected by chloromethyl-2',7'dichlorodihydro fluorescein diacetate staining, and differences in mitochondrial dysfunction were analyzed through measurement of mitochondrial membrane potential (∆ψm), adenine nucleotide translocase transport activity and adenine nucleotide levels. MTT and flow cytometry assays were also used to analyze cell proliferation and apoptosis, and the effects of NAR on the nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathway were investigated using small interfering RNA methods. The authors detected an increased accumulation of ROS in the model group, and high-dose NAR could significantly reduce the levels of ROS. Furthermore, NAR could improve mitochondrial dysfunction, as indicated by increased levels of high-energy phosphates, enhanced mitochondrial ANT transport activity and increased mitochondrial membrane potential. Moreover, NAR increased cell viability and decreased the rate of cell apoptosis. NAR also increased the expression of Nrf2 and its downstream target genes. These findings demonstrated that NAR could reduce oxidative stress and improve mitochondrial dysfunction via activation of the Nrf2/ARE signaling pathway in neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.