reputation systems are essential to evaluate the trustworthiness of participating peers and to combat the selfish, dishonest, and malicious peer behaviors. The system collects locally-generated peer feedbacks and aggregates them to yield the global reputation scores. Surprisingly, most previous work ignored the distribution of peer feedbacks.We use a trust overlay network (TON) to model the trust relationships among peers. After examining the eBay transaction trace of over 10,000 users, we discovered a power-law distribution in user feedbacks. Our mathematical analysis justifies that power-law distribution is applicable to any dynamically growing P2P systems, either structured or unstructured.We develop a robust and scalable P2P reputation system, PowerTrust, to leverage the power-law feedback characteristics. The PowerTrust system dynamically selects small number of power nodes that are most reputable using a distributed ranking mechanism. By using a lookahead random walk strategy and leveraging the power nodes, the PowerTrust significantly improves in global reputation accuracy and aggregation speed. PowerTrust is adaptable to dynamics in peer joining and leaving and robust to disturbance by malicious peers. Through P2P network simulation experiments, we find significant performance gains in using PowerTrust.This power-law guided reputation system design proves to achieve high query success rate in P2P file-sharing applications. The system also reduces the total job makespan and failure rate in large-scale, parameter-sweeping P2P Grid applications.
In scheduling a large number of user jobs for parallel execution on an open-resource Grid system, the jobs are subject to system failures or delays caused by infected hardware, software vulnerability, and distrusted security policy. This paper models the risk and insecure conditions in Grid job scheduling. Three risk-resilient strategies, preemptive, replication, and delay-tolerant, are developed to provide security assurance. We propose six risk-resilient scheduling algorithms to assure secure Grid job execution under different risky conditions. We report the simulated Grid performances of these new Grid job scheduling algorithms under the NAS and PSA workloads. The relative performance is measured by the total job makespan, Grid resource utilization, job failure rate, slowdown ratio, replication overhead, etc. In addition to extending from known scheduling heuristics, we developed a new space-time genetic algorithm (STGA) based on faster searching and protected chromosome formation. Our simulation results suggest that, in a wide-area Grid environment, it is more resilient for the global job scheduler to tolerate some job delays instead of resorting to preemption or replication or taking a risk on unreliable resources allocated. We find that delay-tolerant Min-Min and STGA job scheduling have 13-23 percent higher performance than using risky or preemptive or replicated algorithms. The resource overheads for replicated job scheduling are kept at a low 15 percent. The delayed job execution is optimized with a delay factor, which is 20 percent of the total makespan. A Kiviat graph is proposed for demonstrating the quality of Grid computing services. These riskresilient job scheduling schemes can upgrade Grid performance significantly at only a moderate increase in extra resources or scheduling delays in a risky Grid computing environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.