Arabidopsis thaliana has 11 members belonging to the typical type-B ARR (authentic response regulator) family. Among them, seven highly homologous members appear also to be conserved in rice (Oryza sativa), but others are not. It was suggested that these seven ARRs are commonly implicated as DNA-binding transcription factors in the phosphorelay-mediated cytokinin signal transduction network in higher plants. To gain an insight into the functions of the cytokinin-associated type-B ARRs, we previously investigated an arr1 arr10 arr12 triple mutant and reported that it exhibited stunted growth and abnormality in vascular development. Based on this fact, here we attempted to characterize the mutant intensively with reference to cytokinin-associated phenotypes through the life cycle. We showed that the observed cytokinin-associated phenotypes of arr1 arr10 arr12 were very severe and highly analogous to those observed for certain ahk2 ahk3 ahk4/cre1 triple mutants, which have virtually no cytokinin receptor to propagate the phosphorelay signal transduction network. Among the seven ARR members belonging to the cytokinin-associated type-B ARR subfamily, it was thus suggested that ARR1, ARR10 and ARR12 together play essential (or general) roles in cytokinin signal transduction. It is therefore conceivable that the other type-B ARRs (ARR2, ARR11, ARR14 and ARR18) might play more specific roles spatially and temporally in plants.
During the last decade, tremendous progress has been made in understanding the molecular mechanisms underlying the plant circadian clock in Arabidopsis thaliana, mainly taking advantage of the availability of its entire genomic sequence. It is also well understood how the clock controls the photomorphogenesis of seedlings, including the shade avoidance response, and how the clock controls the photoperiodic flowering time in the spring annual long-days herb A. thaliana. Based on this, here we attempt to shed light on these clock-controlled fundamental and physiological events in Lotus japonicus, which is a perennial temperate legume with a morphological nature quite different from Arabidopsis. In the Lotus database, we first compiled as many clock-, light-, and flowering-associated coding sequences as possible, which appear to be orthologous or homologous to the Arabidopsis counterparts. Then we focused on the PHYTOCHROME INTERACTING FACTOR4 (PIF4)-mediated photomorphogenic pathway and the FLOWERING LOCUS T (FT)-mediated photoperiodic flowering pathway. It was shown in L. japonicus that the putative LjPIF4 homologue is expressed in a manner dependent on the circadian clock, and the putative LjFT orthologue is expressed coincidentally and especially in the long-days conditions, as in the case of A. thaliana. LjFT is capable of promoting flowering in A. thaliana, whereas the function of LjPIF4 seems to be divergent to a certain extent from that of AtPIF4. These results are discussed with emphasis on the intriguing differences between these model plant species.
The two-component systems (TCS), or histidine-to-aspartate phosphorelays, are evolutionarily conserved common signal transduction mechanisms that are implicated in a wide variety of cellular responses to environmental stimuli in both prokaryotes and eukaryotes including plants. Among higher plants, legumes including Lotus japonicus have a unique ability to engage in beneficial symbiosis with nitrogen-fixing bacteria. We previously presented a genome-wide compiled list of TCS-associated components of Mesorhizobium loti, which is a symbiont specific to L. japonicus (Hagiwara et al. 2004, DNA Res., 11, 57–65). To gain both general and specific insights into TCS of this currently attractive model legume, here we compiled TCS-associated components as many as possible from a genome-wide viewpoint by taking advantage that the efforts of whole genome sequencing of L. japonicus are almost at final stage. In the current database (), it was found that L. japonicus has, at least, 14 genes each encoding a histidine kinase, 7 histidine-containing phosphotransmitter-related genes, 7 type-A response regulator (RR)-related genes, 11 type-B RR-related genes, and also 5 circadian clock-associated pseudo-RR genes. These results suggested that most of the L. japonicus TCS-associated genes have already been uncovered in this genome-wide analysis, if not all. Here, characteristics of these TCS-associated components of L. japonicus were inspected, one by one, in comparison with those of Arabidopsis thaliana. In addition, some critical experiments were also done to gain further insights into the functions of L. japonicus TCS-associated genes with special reference to cytokinin-mediated signal transduction and circadian clock.
Shade avoidance responses are changes in plant architecture to reduce the part of a body that is in the shade in natural habitats. The most common warning signal that induces shade avoidance responses is reduction of red/far-red light ratio perceived by phytochromes. A pair of basic helix-loop-helix transcription factors, named PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) and PIF5, is crucially involved in the shade avoidance-induced hypocotyl elongation in Arabidopsis thaliana. It has been recently reported that PIF7 also plays a role in this event. Here, we examined the involvement of these PIFs in end-of-day far-red light (EODFR) responses under light and dark cycle conditions. It was shown that PIF7 played a predominant role in the EODFR-dependent hypocotyl elongation. We propose the mechanism by which PIF7 together with PIF4 and PIF5 coordinately transcribes a set of downstream genes to promote elongation of hypocotyls in response to the EODFR treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.