Acetylcholinesterase (AChE) activity has traditionally been monitored as a biomarker of organophosphate (OP) and/or carbamate exposure. However, AChE activity may not be the most sensitive endpoint for these agrochemicals, because OPs can cause adverse physiological effects at concentrations that do not affect AChE activity. Carboxylesterases are a related family of enzymes that have higher affinity than AChE for some OPs and carbamates and may be more sensitive indicators of environmental exposure to these pesticides. In this study, carboxylesterase and AChE activity, cytochrome P4501A (CYP1A) protein levels, and mortality were measured in individual juvenile Chinook salmon (Oncorhynchus tshawytscha) following exposure to an OP (chlorpyrifos) and a pyrethroid (esfenvalerate). As expected, high doses of chlorpyrifos and esfenvalerate were acutely toxic, with nominal concentrations (100 and 1 μg/l, respectively) causing 100% mortality within 96 h. Exposure to chlorpyrifos at a high dose (7.3 μg/l), but not a low dose (1.2 μg/l), significantly inhibited AChE activity in both brain and muscle tissue (85% and 92% inhibition, respectively), while esfenvalerate exposure had no effect. In contrast, liver carboxylesterase activity was significantly inhibited at both the low and high chlorpyrifos dose exposure (56% and 79% inhibition, respectively), while esfenvalerate exposure still had little effect. The inhibition of carboxylesterase activity at levels of chlorpyrifos that did not affect AChE activity suggests that some salmon carboxylesterase isozymes may be more sensitive than AChE to inhibition by OPs. CYP1A protein levels were ∼30% suppressed by chlorpyrifos exposure at the high dose, but esfenvalerate had no effect. Three teleost species, Chinook salmon, medaka (Oryzias latipes) and Sacramento splittail (Pogonichthys macrolepidotus), were examined for their ability to hydrolyze a series of pyrethroid surrogate substrates and in all cases hydrolysis activity was undetectable. Together these data suggest that (1) carboxylesterase activity inhibition may be a more sensitive biomarker for OP exposure than AChE activity, (2) neither AChE nor carboxylesterase activity are biomarkers for pyrethroid exposure, (3) CYP1A protein is not a sensitive marker for these agrochemicals and (4) slow hydrolysis rates may be partly responsible for acute pyrethroid toxicity in fish.
Aquatic ecosystems around the world face serious threats from anthropogenic contaminants. Results from 8 years of field and laboratory investigations indicate that sublethal contaminant exposure is occurring in the early life stages of striped bass in the San Francisco Estuary, a population in continual decline since its initial collapse during the 1970s. Biologically significant levels of polychlorinated biphenyls, polybrominated diphenyl ethers, and current-use/legacy pesticides were found in all egg samples from river-collected fish. Developmental changes previously unseen with standard methods were detected with a technique using the principles of unbiased stereology. Abnormal yolk utilization, brain and liver development, and overall growth were observed in larvae from river-collected fish. Histopathological analyses confirmed and identified developmental alterations. Using this methodology enabled us to present a conclusive line of evidence for the maternal transfer of xenobiotics and their adverse effects on larval striped bass in this estuary.Morone saxatilis ͉ contaminants ͉ biomarkers ͉ histopathology ͉ unbiased stereology
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.