The existing electrocardiogram (ECG) biometrics do not perform well when ECG changes after the enrollment phase because the feature extraction is not able to relate ECG collected during enrollment and ECG collected during classification. In this research, we propose the sequence pair feature extractor, inspired by Bidirectional Encoder Representations from Transformers (BERT)’s sentence pair task, to obtain a dynamic representation of a pair of ECGs. We also propose using the self-attention mechanism of the transformer to draw an inter-identity relationship when performing ECG identification tasks. The model was trained once with datasets built from 10 ECG databases, and then, it was applied to six other ECG databases without retraining. We emphasize the significance of the time separation between enrollment and classification when presenting the results. The model scored 96.20%, 100.0%, 99.91%, 96.09%, 96.35%, and 98.10% identification accuracy on MIT-BIH Atrial Fibrillation Database (AFDB), Combined measurement of ECG, Breathing and Seismocardiograms (CEBSDB), MIT-BIH Normal Sinus Rhythm Database (NSRDB), MIT-BIH ST Change Database (STDB), ECG-ID Database (ECGIDDB), and PTB Diagnostic ECG Database (PTBDB), respectively, over a short time separation. The model scored 92.70% and 64.16% identification accuracy on ECGIDDB and PTBDB, respectively, over a long time separation, which is a significant improvement compared to state-of-the-art methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.