Changbai Mountain is an important part of the development and opening pilot area of Changjitu. It is the birthplace of Songhua River, Yalu River, and Tumen River, and is known as the source of the three rivers. Millions of people live in the basin. A volcanic eruption accompanied by earthquakes would lead to a large number of landslides, debris flows, and show a chain effect, the formation of a secondary geological disaster chain, which is a serious threat to people’s lives and property safety. This paper selected indexes from three aspects: the hazard of earthquake-induced geological disaster chain, the exposure and vulnerability of disaster-bearing bodies, and the risk assessment of earthquake-induced geological disaster chain. The sensitivity values of each influence factor were calculated by the certainty factor (CF) using the support vector machine, and then, the susceptibility assessment was obtained. The cumulative displacement calculated by the Newmark model represented the potential risk intensity. We considered the Changbai Mountain volcanic earthquake–landslide disaster chain as an example. The results of risk assessment showed that the extremely high and high risk areas were mainly located within the 12 km radius of Tianchi Lake, and the other areas in the study area were mainly associated with very low to low risk values. The verification results showed that the receiver operating characteristic (ROC) curve area was 0.8373, indicating that the method was very effective in the identification and assessment of seismic hazard chain risk. In these high-risk areas, relevant countermeasures should be formulated to prevent the risk of geological disasters, strengthen the implementation of regional disaster prevention and reduction work, and ensure the safety of residents’ lives and property.
With the rapid development of urbanization and industrialization, water resources are in increasingly short supply, and the construction of sewage treatment plants can ensure the sustainable development of water resources. To eliminate the potential safety hazards of municipal sewage treatment plants and prevent safety accidents from the source, this paper takes a municipal sewage treatment plant in Changchun as the research object, puts forward the evaluation method of the “improved Best-Worst Method (BWM)—fuzzy comprehensive evaluation method”, and carries out safety evaluation research on the research object. Firstly, combined with the technological process of sewage treatment plants, the evaluation index system is constructed from four factors: human factors, material factors, environmental factors, and management factors. Secondly, the improved BWM is used to calculate the weights. Finally, the fuzzy comprehensive evaluation method is used for safety evaluation, and the evaluation of safety status is obtained: the safety level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.