BACKGROUND:
There is no optimal method for reconstruction of large calvarial defects. Because of the limitations of autologous bone grafts and alloplastic materials, new methods for performing cranioplasties are needed.
OBJECTIVE:
To create autologous bone to repair cranial defects.
METHODS:
We performed a cranioplasty procedure with this new method in 4 patients who had large calvarial defects of different etiologies. We used autologous adipose-derived stem cells seeded in beta-tricalcium phosphate granules. For 2 patients, we used a bilaminate technique with resorbable mesh.
RESULTS:
During follow-up, there were no clinically relevant postoperative complications. The computed tomography scans revealed satisfactory outcome in ossification, and in the clinical examinations, the outcomes were good. The cranioplasty was measured in Hounsfield units from each computed tomography scan. The Hounsfield units increased gradually to equal the value of bone.
CONCLUSION:
The combination of scaffold material such as beta-tricalcium phosphate and autologous adipose-derived stem cells constitutes a promising model for reconstruction of human large cranial defects. The success of these clinical cases paves way for further studies and clinical applications to turn this method into a reliable treatment regimen.
Vagus nerve stimulation (VNS) is used for treating refractory epilepsy and major depression. While the impact of this treatment on seizures has been established, its impact on human cognition remains equivocal. The goal of this study is to elucidate the immediate effects of vagus nerve stimulation on attention, cognition, and emotional reactivity in patients with epilepsy. Twenty patients (12 male and 8 female; 45 ± 13 years old) treated with VNS due to refractory epilepsy participated in the study. Subjects performed a computer-based test of executive functions embedded with emotional distractors while their brain activity was recorded with electroencephalography. Subjects' cognitive performance, early visual event-related potential N1, and frontal alpha asymmetry were studied when cyclic vagus nerve stimulation was on and when it was off. We found that vagus nerve stimulation improved working memory performance as seen in reduced errors on a subtask that relied on working memory, odds ratio (OR) = 0.63 (95% confidence interval, CI [0.47, 0.85]) and increased N1 amplitude, F(1, 15) = 10.17, p = .006. In addition, vagus nerve stimulation resulted in longer reaction time, F(1, 16) = 8.23, p = .019, and greater frontal alpha asymmetry, F(1, 16) = 11.79, p = .003, in response to threat-related distractors. This is the first study to show immediate improvement in working memory performance in humans with clinically relevant vagus nerve stimulation. Furthermore, vagus nerve stimulation had immediate effects on emotional reactivity evidenced in behavior and brain physiology.
These results show that only single seizures cause activation of cytokine cascade and associated inflammatory signals. In the case of recurrent seizures, these signals may result in structural changes in the nervous tissue, which are generally associated with drug refractory epilepsy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.