Recently, the Ramprasad group reported a quantitative structure–property relationship (QSPR) model for predicting the E gap values of 4209 polymers, which yielded a test set R 2 score of 0.90 and a test set root-mean-square error (RMSE) score of 0.44 at a train/test split ratio of 80/20. In this paper, we present a new QSPR model named LGB-Stack , which performs a two-level stacked generalization using the light gradient boosting machine. At level 1, multiple weak models are trained, and at level 2, they are combined into a strong final model. Four molecular fingerprints were generated from the simplified molecular input line entry system notations of the polymers. They were trimmed using recursive feature elimination and used as the initial input features for training the weak models. The output predictions of the weak models were used as the new input features for training the final model, which completes the LGB-Stack model training process. Our results show that the best test set R 2 and the RMSE scores of LGB-Stack at the train/test split ratio of 80/20 were 0.92 and 0.41, respectively. The accuracy scores further improved to 0.94 and 0.34, respectively, when the train/test split ratio of 95/5 was used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.