An artificial solid electrolyte interphase (SEI) is demonstrated for the efficient and safe operation of a lithium metal anode. Composed of lithium-ion-conducting inorganic nanoparticles within a flexible polymer binder matrix, the rationally designed artificial SEI not only mechanically suppresses lithium dendrite formation but also promotes homogeneous lithium-ion flux, significantly enhancing the efficiency and cycle life of the lithium metal anode.
Biofunctionalization of silicon substrates is important to the development of silicon-based biosensors and devices. Compared to conventional organosiloxane films on silicon oxide intermediate layers, organic monolayers directly bound to the non-oxidized silicon substrates via Si-C bonds enhance the sensitivity of detection and the stability against hydrolytic cleavage. Such monolayers presenting a high density of terminal alkynyl groups for bioconjugation via coppercatalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC, a "click" reaction) were reported. However, yields of the CuAAC reactions on these monolayer platforms were low. Also, the nonspecific adsorption of proteins on the resultant surfaces remained a major obstacle for many potential biological applications. Herein, we report a new type of "clickable" monolayers grown by selective, photo-activated surface hydrosilylation of α,ω-alkenynes, where the alkynyl terminal is protected with a trimethylgermanyl (TMG) group, on hydrogen-terminated silicon substrates. The TMG groups on the film are readily removed in aqueous solutions in the presence of Cu(I). Significantly, the degermanylation and the subsequent CuAAC reaction with various azides could be combined into a single step in good yields. Thus, oligo(ethylene glycol) (OEG) with an azidotag was attached to the TMG-alkyne surfaces, leading to OEG-terminated surfaces that reduced the non-specific adsorption of protein (fibrinogen) by >98%. The CuAAC reaction could be performed in microarray format to generate arrays of mannose and biotin with varied densities on the protein-resistant OEG background. We also demonstrated that the monolayer platform could be functionalized with mannose for highly specific capturing of living targets (Escherichia coli expressing fimbriae) onto the silicon substrates.
To examine the effects of different functionalization methods on adsorption behavior, anionic-exchange MIL-101(Cr) metal-organic frameworks (MOFs) were synthesized using preassembled modification (PAM) and postsynthetic modification (PSM) methods. Perfluorooctanoic acid (PFOA) adsorption results indicated that the maximum PFOA adsorption capacity was 1.19 and 1.89 mmol g(-1) for anionic-exchange MIL-101(Cr) prepared by PAM and PSM, respectively. The sorption equilibrium was rapidly reached within 60 min. Our results indicated that PSM is a better modification technique for introducing functional groups onto MOFs for adsorptive removal because PAM places functional groups onto the aperture of the nanopore, which hinders the entrance of organic contaminants. Our experimental results and the results of complementary density functional theory calculations revealed that in addition to the anion-exchange mechanism, the major PFOA adsorption mechanism is a combination of Lewis acid/base complexation between PFOA and Cr(III) and electrostatic interaction between PFOA and the protonated carboxyl groups of the bdc (terephthalic acid) linker.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.