Direct numerical simulation databases have been used to study the effect of compressibility on mixing layers. The simulations cover convective Mach numbers from 0.2 to 1.2 and all contain a fully resolved turbulent energy cascade to small spatial scales. Statistical information is extracted from the databases to determine reasons for the reduced growth rate that is observed as the convective Mach number is increased. It is found that the dilatational contribution to dissipation is negligible even when eddy shocklets are observed in the flow. Also pressure-dilatation is not found to be significant. Using an accurate relation between the momentum thickness growth rate and the production of turbulence kinetic energy together with integrated equations for the Reynolds stress tensor it is shown that reduced pressure fluctuations are responsible for the changes in growth rate via the pressure-strain term. A deterministic model for the required pressure fluctuations is given based on the structure of variable-density vortices and the assumption that the limiting eddies are sonic. Simple anisotropy considerations are used to close the averaged equations. Good agreement with turbulence statistics obtained from the simulations is found.
The pseudo-potential lattice Boltzmann (LB) model is a widely used multiphase model in the LB community. In this model, an interaction force, which is usually implemented via a forcing scheme, is employed to mimic the molecular interactions that cause phase segregation. The forcing scheme is therefore expected to play an important role in the pseudo-potential LB model. In this paper, we aim to address some key issues about forcing schemes in the pseudo-potential LB model. Firstly, theoretical and numerical analyses will be made for Shan-Chen's forcing scheme and the exact-difference-method (EDM) forcing scheme. The nature of these two schemes and their recovered macroscopic equations will be shown. Secondly, through a theoretical analysis, we will reveal the physics behind the phenomenon that different forcing schemes exhibit different performances in the pseudo-potential LB model. Moreover, based on the analysis, we will present an improved forcing scheme and numerically demonstrate that the improved scheme can be treated as an alternative approach for achieving thermodynamic consistency in the pseudo-potential LB model.
A hybrid thermal lattice Boltzmann (LB) model is presented to simulate thermal multiphase flows with phase change based on an improved pseudopotential LB approach [Q. Li, K. H. Luo, and X. J. Li, Phys. Rev. E 87, 053301 (2013)]. The present model does not suffer from the spurious term caused by the forcing-term effect, which was encountered in some previous thermal LB models for liquid-vapor phase change. Using the model, the liquid-vapor boiling process is simulated. The boiling curve together with the three boiling stages (nucleate boiling, transition boiling, and film boiling) is numerically reproduced in the LB community for the first time. The numerical results show that the basic features and the fundamental characteristics of boiling heat transfer are well captured, such as the severe fluctuation of transient heat flux in the transition boiling and the feature that the maximum heat transfer coefficient lies at a lower wall superheat than that of the maximum heat flux. Furthermore, the effects of the heating surface wettability on boiling heat transfer are investigated. It is found that an increase in contact angle promotes the onset of boiling but reduces the critical heat flux, and makes the boiling process enter into the film boiling regime at a lower wall superheat, which is consistent with the findings from experimental studies.
Volatile organic compounds (VOCs) have attracted world-wide attention regarding their serious hazards on ecological environment and human health. Industrial processes such as fossil fuel combustion, petrochemicals, painting, coatings, pesticides, plastics, contributed to the large proportion of anthropogenic VOCs emission. Destructive methods (catalysis oxidation and biofiltration) and recovery methods (absorption, adsorption, condensation and membrane separation) have been developed for VOCs removal.Adsorption is established as one of the most promising strategies for VOCs abatement thanks to its characteristics of cost-effectiveness, simplicity and low energy consumption. The prominent progress in VOCs adsorption by different kinds of porous materials (such as carbon-based materials, oxygen-contained materials, organic polymers and composites is carefully summarized in this work, concerning the mechanism of adsorbate-adsorbent interactions, modification methods for the mentioned porous materials, and enhancement of VOCs adsorption capacity. This overview is to provide a comprehensive understanding of VOCs adsorption mechanisms and up-to-date progress of modification technologies for different porous materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.