Hybrid fibers consisting of biopolymers and inorganic nanoparticles are receiving increasing attention due to their unique properties. Commonly, the nanoparticles are chosen for their intrinsic properties such as magnetic, thermal, or electrical conductivity. The biopolymer component of the hybrid fiber is chosen for its mechanical properties and ability to act as a scaffold or matrix for the nanoparticles. While there are many fiber-forming synthetic polymers, there has been a recent interest in replacing these systems with biopolymers due to their sustainability, biocompatibility, nontoxicity, and biodegradability. Fibers made from biopolymers have one additional benefit over synthetic polymers as they make good scaffolds for embedding nanoparticles without the need of any additional bonding agents. In particular, naturally occurring biopolymers such as proteins exhibit a myriad of interactions with nanoparticles, including ionic, H-bonding, covalent, Van der Waals, and electrostatic interactions. The diverse range of interactions between magnetic nanoparticles and biopolymers makes resulting hybrid fibers of particular interest as magnetic-responsive materials. Magnetically responsive hybrid biopolymer fibers have many features, including enhanced thermal stabilities, strong mechanical toughness, and perhaps most interestingly multifunctionality, allowing for a wide range of applications. These applications range from biosensing, filtration, UV shielding, antimicrobial, and medical applications, to name a few. Here, we review established hybrid fibers consisting of biopolymers and nanoparticles with a primary focus on biopolymers doped with magnetic nanoparticles and their various putative applications.
Our understanding of the extraordinary mechanical and physico-chemical properties of spider silk is largely confined to the fibers produced by orb-weaving spiders, despite the diversity of foraging webs that occur across numerous spider families. Crab spiders (Thomisidae) are described as ambush predators that do not build webs, but nevertheless use silk for draglines, egg cases and assembling leaf-nests. A little-known exception is the Australian thomisid Saccodomus formivorus, which constructs a basket-like silk web of extraordinary dimensional stability and structural integrity that facilitates the capture of its ant prey. We examined the physical and chemical properties of this unusual web and revealed that the web threads comprise microfibers that are embedded within a biopolymeric matrix containing additionally longitudinally-oriented submicron fibers. We showed that the micro- and submicron fibers differ in their chemical composition and that the web threads show a remarkable lateral resilience compared with that of the major ampullate silk of a well-investigated orb weaver. Our novel analyses of these unusual web and silk characteristics highlight how investigations of non-model species can broaden our understanding of silks and the evolution of foraging webs.
The fabrication of green optical waveguides based on cellulose and spider silk might allow the processing of novel biocompatible materials. Regenerated cellulose fibers are used as the core and recombinantly produced spider silk proteins eADF4(C16) as the cladding material. A detected delamination between core and cladding could be circumvented by using a modified spider silk protein with a cellulose-binding domain-enduring permanent adhesion between the cellulose core and the spider silk cladding. The applied spider silk materials were characterized optically, and the theoretical maximum data rate was determined. The results show optical waveguide structures promising for medical applications, for example, in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.