Deregulation of the ubiquitin ligase E6AP is causally linked to the development of human disease, including cervical cancer. In complex with the E6 oncoprotein of human papillomaviruses, E6AP targets the tumor suppressor p53 for degradation, thereby contributing to carcinogenesis. Moreover, E6 acts as a potent activator of E6AP by a yet unknown mechanism. However, structural information explaining how the E6AP-E6-p53 enzyme-substrate complex is assembled, and how E6 stimulates E6AP, is largely missing. Here, we develop and apply different crosslinking mass spectrometry-based approaches to study the E6AP-E6-p53 interplay. We show that binding of E6 induces conformational rearrangements in E6AP, thereby positioning E6 and p53 in the immediate vicinity of the catalytic center of E6AP. Our data provide structural and functional insights into the dynamics of the full-length E6AP-E6-p53 enzyme-substrate complex, demonstrating how E6 can stimulate the ubiquitin ligase activity of E6AP while facilitating ubiquitin transfer from E6AP onto p53.
Proteome-wide crosslinking studies have spurred great interest as they facilitate structural probing of protein interactions in living cells and organisms. However, current studies have a bias for high-abundant proteins. In a paradigm shift, we demonstrate both experimentally and by a kinetic model that this bias is caused by the propensity of crosslinks to preferentially form on high abundant proteins and not by the inability to detect crosslinks due to limitations in current technology. We further show, by using both an in-vitro mimic of a crowded cellular environment and eukaryotic cell lysates, that parameters optimized towards a pseudo 1 st order kinetics model result in a significant 3 to 10-fold overall increase in the detection of lower-abundant proteins on a proteome-wide scale. Our study therefore explains the cause of a major limitation in current proteome-wide crosslinking studies and demonstrates how to address a larger part of the proteome by crosslinking..
Aberrant liquid-to-solid phase transitions of biomolecular condensates have been linked to various neurodegenerative diseases. However, the underlying molecular interactions that drive aging remain enigmatic. Here, we develop quantitative time-resolved crosslinking mass spectrometry to monitor protein interactions and dynamics inside condensates formed by the protein fused in sarcoma (FUS). We identify misfolding of the RNA recognition motif (RRM) of FUS as a key driver of condensate ageing. We demonstrate that the small heat shock protein HspB8 partitions into FUS condensates via its intrinsically disordered domain and prevents condensate hardening via condensate-specific interactions that are mediated by its α-crystallin domain (αCD). These αCD-mediated interactions are altered in a disease-associated mutant of HspB8, which abrogates the ability of HspB8 to prevent condensate hardening. We propose that stabilizing aggregation-prone folded RNA-binding domains inside condensates by molecular chaperones may be a general mechanism to prevent aberrant phase transitions.
Decoding the role of histone posttranslational modifications (PTMs) is key to understand the fundamental process of epigenetic regulation. This is well studied for PTMs of core histones but not for linker histone H1 in general and its ubiquitylation in particular due to a lack of proper tools. Here, we report on the chemical synthesis of site-specifically mono-ubiquitylated H1.2 and identify its ubiquitin-dependent interactome on a proteome-wide scale. We show that site-specific ubiquitylation of H1 at position K64 modulates interactions with deubiquitylating enzymes and the deacetylase SIRT1. Moreover, it affects H1-dependent chromatosome assembly and phase separation resulting in a more open chromatosome conformation generally associated with a transcriptionally active chromatin state. In summary, we propose that site-specific ubiquitylation plays a general regulatory role for linker histone H1.
Small heat-shock proteins (sHSPs) are important members of the cellular stress response in all species. Their best-described function is the binding of early unfolding states and the resulting prevention of protein aggregation. Many sHSPs exist as a polydisperse composition of oligomers, which undergoes changes in subunit composition, folding status, and relative distribution upon heat activation. To date, only an incomplete picture of the mechanism of sHSP activation exists; in particular, the molecular basis of how sHSPs bind client proteins and mediate client specificity is not fully understood. In this study, we have applied cross-linking mass spectrometry (XL-MS) to obtain detailed structural information on sHSP activation and client binding for yeast Hsp26. Our cross-linking data reveals the middle domain of Hsp26 as a client-independent interface in multiple Hsp26::client complexes and indicates that client specificity is likely mediated via additional binding sites within its αcrystallin domain and C-terminal extension. Our quantitative XL-MS data underpins the middle domain as the main driver of heat-induced activation and client binding but shows that global rearrangements spanning all domains of Hsp26 take place simultaneously. We also investigated a Hsp26::client complex in the presence of Ssa1 (Hsp70) and Ydj1(Hsp40) at the initial stage of refolding and observe that the interaction between refolding chaperones is altered by the presence of a client protein, pointing to a mechanism where the interaction of Ydj1 with the HSP::client complex initiates the assembly of the active refolding machinery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.