A unilateral, lightweight powered hip exoskeleton has been shown to improve walking economy in individuals with above-knee amputations. However, the mechanism responsible for this improvement is unknown. In this study we assess the biomechanics of individuals with above-knee amputations walking with and without a unilateral, lightweight powered hip exoskeleton. We hypothesize that assisting the residual limb will reduce the net residual hip energy. Methods: Eight individuals with above-knee amputations walked on a treadmill at 1 m/s with and without a unilateral powered hip exoskeleton. Flexion/extension assistance was provided to the residual hip. Motion capture and inverse dynamic analysis were performed to assess gait kinematics, kinetics, center of mass, and center of pressure. Results: The net energy at the residual hip decreased from 0.05±0.04 J/kg without the exoskeleton to −0.01±0.05 J/kg with the exoskeleton (p = 0.026). The cumulative positive energy of the residual hip decreased on average by 18.2% with 95% confidence intervals (CI) (0.20 J/kg, 0.24 J/kg) and (0.16 J/kg, 0.20 J/kg) without and with the exoskeleton, respectively. During stance, the hip extension torque of the residual limb decreased on average by 37.5%, 95% CI (0.28 Nm/kg, 0.36 Nm/kg), (0.17 Nm/kg, 0.23 Nm/kg) without and with the exoskeleton, respectively. Conclusion: Powered hip exoskeleton assistance significantly reduced the net residual hip energy, with concentric energy being the main contributor to this change. We believe that the reduction Manuscript
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.