By studying a negative gradient flow of certain Hessian functionals we establish the existence of critical points of the functionals and consequently the existence of ground states to a class of nonhomogenous Hessian equations. To achieve this we derive uniform, first-and second-order a priori estimates for the elliptic and parabolic Hessian equations. Our results generalize well-known results for semilinear elliptic equations and the Monge-Ampère equation.
L'accès aux archives de la revue « Annales de l'I. H. P., section C » (http://www.elsevier.com/locate/anihpc) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/
Similarity between the roles of the group SL(2, R) on the equation for self-similar solutions of the anisotropic affine curve shortening problem and of the conformal group of S 2 on the Nirenberg problem for prescribed scalar curvature is explored. Sufficient conditions for the existence of affine self-similar curves are established. Classification (1991):35J60, 35K65, 53A04
Mathematics Subject
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.