We have focused on melt adsorption as manufacture method of wax matrices to control particles size of granules more easily than melt granulation. The purpose of present study was to investigate the possibility of identifying a hydrophobic material with a low melting point, currently used as a meltable binder of melt granulation, to apply as a novel carrier in melt adsorption. Glyceryl monostearate (GM) and stearic acid (SA) were selected as candidate hydrophobic materials with low melting points. Neusilin US2 (US2), with a particle diameter of around 100 µm was selected as a surface adsorbent, while dibasic calcium phosphate dihydrate (DCPD), was used as a non-adsorbent control to prepare melting granules as a standard for comparison. We prepared granules containing ibuprofen (IBU) by melt adsorption or melt granulation and evaluated the particle size, physical properties and crystallinity of granules. Compared with melt granulation using DCPD, melt adsorption can be performed over a wide range of 14 to 70% for the ratio of molten components. Moreover, the particle size; d50 of obtained granules was 100-200 µm, and these physical properties showed good flowability and roundness. The process of melt adsorption did not affect the crystalline form of IBU. Therefore, the present study has demonstrated for the first time that melt adsorption using a hydrophobic material, GM or SA, has the potential capability to control the particle size of granules and offers the possibility of application as a novel controlled release technique.
Melt adsorption is a manufacturing method that offers precise control of particle size distribution of granules and circumvents the disadvantages of conventional melt granulation. However, drug release from particles adsorbed with hydrophobic materials has not been fully investigated, and there are missing details as to whether particles manufactured by this technique can be applied to orally disintegrating tablets (ODT). In this report, we aimed to optimize process parameters and formulation to manufacture ODT containing melt adsorption-particles with the specific characteristic of sustained release. Melt adsorption particles containing Neusilin US2 as the adsorbent were prepared by using various waxes to determine the most suitable material for controlled release formulation. Glycerol fatty acid ester (Poem TR-FB: TR-FB) was the optimal wax examined because of its drug release pattern and tabletability. We then optimized manufacturing conditions by examining granulation time, disintegrant amount per tablet and compression force on the tablet for ODT that meet the criteria of controlled drug release, tensile strength and disintegration of the tablet. Multiple regression analysis revealed the effect of process parameters on tablet properties and drug release with increasing the granulation time affording sustained release of the drug. The analysis also showed that a high compression force crushed the granules coated by TR-FB, which impaired sustained drug release. From the regression model the optimal manufacturing conditions were determined, and the tablet prepared under these conditions concurred with the predicted values and met all criteria. This new technique should contribute to the development of ODT to improve medication adherence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.