Acute lung injury (ALI) causes high mortality, but its molecular mechanisms are poorly understood. Acid aspiration is a frequent cause of ALI, leading to neutrophil sequestration, increased permeability, and deterioration of gas exchange. We investigated the role of platelet-neutrophil interactions in a murine model of acid-induced ALI. Acid aspiration induced P-selectin-dependent platelet-neutrophil interactions in blood and in lung capillaries. Reducing circulating platelets or blocking P-selectin halted the development of ALI. Bone marrow chimeras showed that platelet, not endothelial, P-selectin was responsible for the injury. The interaction of platelets with neutrophils and endothelia was associated with TXA 2 formation, with detrimental effects on permeability and tissue function. Activated platelets induced endothelial expression of ICAM-1 and increased neutrophil adhesion. Inhibition of platelet-neutrophil aggregation improved gas exchange, reduced neutrophil recruitment and permeability, and prolonged survival. The key findings were confirmed in a sepsis-induced model of ALI. These findings may translate into improved clinical treatments for ALI.
Acute kidney injury (AKI) has emerged as a major public health problem that affects millions of patients worldwide and leads to decreased survival and increased progression of underlying chronic kidney disease (CKD). Recent consensus criteria for definition and classification of AKI have provided more consistent estimates of AKI epidemiology. Patients, in particular those in the ICU, are dying of AKI and not just simply with AKI. Even small changes in serum creatinine concentrations are associated with a substantial increase in the risk of death. AKI is not a single disease but rather a syndrome comprising multiple clinical conditions. Outcomes from AKI depend on the underlying disease, the severity and duration of renal impairment, and the patient's renal baseline condition. The development of AKI is the consequence of complex interactions between the actual insult and subsequent activation of inflammation and coagulation. Contrary to the conventional view, recent experimental and clinical data argue against renal ischemia-reperfusion as a sine qua non condition for the development of AKI. Loss of renal function can occur without histological signs of tubular damage or even necrosis. The detrimental effects of AKI are not limited to classical well-known symptoms such as fluid overload and electrolyte abnormalities. AKI can also lead to problems that are not readily appreciated at the bedside and can extend well beyond the ICU stay, including progression of CKD and impaired innate immunity. Experimental and small observational studies provide evidence that AKI impairs (innate) immunity and is associated with higher infection rates.
BackgroundDifficulties in prediction and early identification of (acute kidney injury) AKI have hindered the ability to develop preventive and therapeutic measures for this syndrome. We tested the hypothesis that a urine test measuring insulin-like growth factor-binding protein 7 (IGFBP7) and tissue inhibitor of metalloproteinases-2 (TIMP-2), both inducers of G1 cell cycle arrest, a key mechanism implicated in acute kidney injury (AKI), could predict AKI in cardiac surgery patients.MethodsWe studied 50 patients at high risk for AKI undergoing cardiac surgery with cardiopulmonary bypass (CPB). Serial urine samples were analyzed for [TIMP-2]*[IGFBP7] concentrations. The primary outcome measure was AKI as defined by international consensus criteria following surgery. Furthermore, we investigated whether urine [TIMP-2]*[IGFBP7] could predict renal recovery from AKI prior to hospital discharge.Results26 patients (52%) developed AKI. Diagnosis based on serum creatinine and/or oliguria did not occur until 1–3 days after CPB. In contrast, urine concentration of [TIMP-2]*[IGFBP7] rose from a mean of 0.49 (SE 0.24) at baseline to 1.51 (SE 0.57) 4 h after CPB in patients who developed AKI. The maximum urinary [TIMP-2]*[IGFBP7] concentration achieved in the first 24 hours following surgery (composite time point) demonstrated an area under the receiver-operating characteristic curve of 0.84. Sensitivity was 0.92, and specificity was 0.81 for a cutoff value of 0.50. The decline in urinary [TIMP-2]*[IGFBP7] values was the strongest predictor for renal recovery.ConclusionsUrinary [TIMP-2]*[IGFBP7] serves as a sensitive and specific biomarker to predict AKI early after cardiac surgery and to predict renal recovery.Clinical Trial Registration Information: www.germanctr.de/, DRKS-ID: DRKS00005062
-We conclude that noninvasive assessment of inflammation is possible by ultrasound imaging of microbubbles targeted to activated leukocytes by the presence of PS in the lipid shell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.