Cell migration requires the fine spatiotemporal integration of many proteins that regulate the fundamental processes that drive cell movement. Focal adhesion (FA) dynamics is a continuous process involving coordination between FA and actin cytoskeleton, which is essential for cell migration. We studied the spatiotemporal relationship between the dynamics of focal adhesion kinase (FAK) and paxillin at FAs in the protrusion of living endothelial cells. Concurrent dual-color imaging showed that FAK was assembled at FA first, which was followed by paxillin recruitment to the FA. By tracking and quantifying FAK and paxillin in migrating cells, the normalized FAK/Paxillin fluorescence intensity (FI) ratio is > 1 (≈4 fold) at cell front, ≈1 at cell center, and < 1 at cell rear. The significantly higher FAK FI than paxillin FI at cell front indicates that the assembly of FAK-FAs occurs ahead of paxillin at cell front. To determine the time difference between the assemblies of FAK and paxillin at nascent FAs, FAs containing both FAK and paxillin were quantified by image analysis and time correlation. The results show that FAK assembles at the nascent FAs earlier than paxillin in the protrusions at cell front.
Objective:
To determine whether the leaflets of bicuspid aortic valve (BAV) experience increased strain when compared to tricuspid aortic valve (TAV) leaflets.
Background:
The population at highest risk of aortic valve calcification (AVC) are individuals with BAVs. Currently, efforts to medically treat AVC are hampered by a limited understanding of the biomechanical forces involved in the molecular pathogenesis of AVC.
Methods:
Surgically created BAVs and control TAVs were placed into a left heart simulator. Strains were calculated by comparing the distances between points on the aortic valve (AoV) leaflet during various time points during a simulated cardiac cycle.
Results:
The fused leaflets of BAVs experience significantly more strain during systole when compared to TAVs. Specifically, BAVs experience 24% strain (P < .0001) in the radial direction, parallel to the direction of blood flow, as compared to TAVs. There was peak difference of 4% (P < .001) in the circumferential direction.
Discussion:
Based upon the data presented here, we are in the process of identifying how increased strain activates calcification-associated pathways in AoV cells. Future studies will examine whether these stretch responsive pathways can be blocked to inhibit calcification of BAVs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.