The ability to chemically introduce lipid modifications to specific intracellular protein targets would enable the conditional control of protein localization and activity in living cells. We recently developed a chemical–genetic approach in which an engineered SNAP-tag fusion protein can be rapidly relocated and anchored from the cytoplasm to the plasma membrane (PM) upon post-translational covalent lipopeptide conjugation in cells. However, the first-generation system achieved only low to moderate protein anchoring (recruiting) efficiencies and lacked wide applicability. Herein, we describe the rational design of an improved system for intracellular synthetic lipidation-induced PM anchoring of SNAP-tag fusion proteins. In the new system, the SNAPf protein engineered to contain an N-terminal hexalysine (K6) sequence and a C-terminal 10-amino acid deletion, termed K6-SNAPΔ, is fused to a protein of interest. In addition, a SNAP-tag substrate containing a metabolic-resistant myristoyl-DCys lipopeptidomimetic, called mDcBCP, is used as a cell-permeable chemical probe for intracellular SNAP-tag lipidation. The use of this combination allows significantly improved conditional PM anchoring of SNAP-tag fusion proteins. This second-generation system was applied to activate various signaling proteins, including Tiam1, cRaf, PI3K, and Sos, upon synthetic lipidation-induced PM anchoring/recruitment, offering a new and useful research tool in chemical biology and synthetic biology.
Manipulating subcellular protein localization using light is a powerful approach for controlling signaling processes with high spatiotemporal precision. The most widely used strategy for this is based on light-induced protein heterodimerization. The use of small synthetic molecules that can control the localization of target proteins in response to light without the need for a second protein has several advantages. However, such methods have not been well established. Herein, we present a chemo-optogenetic approach for controlling protein localization using a photoactivatable self-localizing ligand (paSL). We developed a paSL that can recruit tag-fused proteins of interest from the cytoplasm to the plasma membrane within seconds upon light illumination. This paSL-induced protein translocation (paSLIPT) is reversible and enables the spatiotemporal control of signaling processes in living cells, even in a local region. paSLIPT can also be used to implement simultaneous optical stimulation and multiplexed imaging of molecular processes in a single cell, offering an attractive and novel chemo-optogenetic platform for interrogating and engineering dynamic cellular functions.
The ability to artificially attach lipids to specific intracellular protein targets would be a valuable approach for controlling protein localization and function in cells. We recently devised a chemogenetic method in which a SNAP-tag fusion protein can be translocated from the cytoplasm to the plasma membrane by post-translationally and covalently conjugating a synthetic lipopeptide in cells. However, the first-generation system lacked general applicability. Herein, we present an improved synthetic lipidation system that enables efficient plasma membrane translocation of SNAP-tag fusion proteins in cells. This second-generation system is now applicable to the control of various cell-signaling molecules, offering a new and useful research tool in chemical biology and synthetic biology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.