The effect of final thermomechanical treatment (FTMT) on the mechanical properties and microstructure of a T-Mg32(Al Zn)49 phase precipitation hardened Al-5.8Mg-4.5Zn-0.5Cu alloy was studied. The as-cold rolled aluminum alloy samples were subjected sequentially to solid solution treatment, pre-deformation, and two-stage aging treatment. Vickers hardness was measured during the aging process under various parameters. Tensile tests were conducted on the representative samples based on the hardness results. Microstructural characteristics were analyzed via transmission electron microscopy and high-resolution transmission electron microscopy. The conventional T6 process was also carried out for comparison. The hardness and tensile strength are increased evidently by the FTMT process for the Al-Mg-Zn-Cu alloy, while the ductility is adversely affected to a small extent. The precipitation at the T6 state consists of a coherent Guinier–Preston zone and T″ phase in the form of intragranular, fine, and spherical particles, while a semi-coherent T′ phase appears after the FTMT process as a new constituent. The distribution of dislocation tangles and isolated dislocations is another feature of FTMT samples. Enhanced precipitation hardening and dislocation strengthening account for the improved mechanical performance of FTMT samples.
Ductile iron is a high-strength cast iron material. The spherical graphite obtained by inoculation treatment effectively improves the mechanical properties of cast iron, resulting in higher strength than carbon steel. However, severe corrosion may occur under specific circumstances, especially in thermal water pipelines. In this paper, the corrosion mechanisms at the main defective points of ductile iron were investigated using microscopic morphological characterization after accelerated tests combined with numerical simulations. The influence law of each environmental factor on the corrosion kinetics of ductile iron in a complex water quality environment was studied using dynamic potential polarization tests. The results showed that the main causative factors leading to the increased corrosion of ductile iron were the presence of tail-like gaps on its surface, and the crescent-shaped shrinkage and loosening organization around the graphite spheres. After mechanical treatment was applied to eliminate the obvious defects, the number of corrosion pits was reduced by 41.6%, and the depth of the pits was slowed down by 40% after five days. By comparison, after ten days, the number of pits was reduced by 51%, and the depth of the pits was slowed down by 50%. The dynamic potential polarization test results show that the dissolved oxygen concentration has the greatest influence on the corrosion of ductile iron in the simulated water environment; meanwhile, the water hardness can slow down the corrosion of ductile iron. The relative influence of each environmental factor is as follows: dissolved oxygen concentration > temperature > immersion time > water hardness > pH > Cl−.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.