Fighter pilots' heart rate (HR), heart rate variation (HRV) and performance during instrument approaches were examined. The subjects were required to fly instrument approaches in a high-fidelity simulator under various levels of task demand. The task demand was manipulated by increasing the load on the subjects by reducing the range at which they commenced the approach. HR and the time domain components of HRV were used as measures of pilot mental workload (PMWL). The findings of this study indicate that HR and HRV are sensitive to varying task demands. HR and HRV were able to distinguish the level of PMWL after which the subjects were no longer able to cope with the increasing task demands and their instrument landing system performance fell to a sub-standard level. The major finding was the HR/HRV's ability to differentiate the sub-standard performance approaches from the high-performance approaches. Practitioner Summary: This paper examined if HR and HRV were sensitive to varying task demands in a fighter aviation environment and if these measures were related to variations in pilot's performance.
The paper describes a multistage influence diagram game for modeling the maneuvering decisions of pilots in one-on-one air combat. It graphically describes the elements of the decision process, contains a model for the dynamics of the aircraft, and takes into account the pilots' preferences under conditions of uncertainty. The pilots' game optimal control sequences with respect to their preference models are obtained by solving the influence diagram game with a moving horizon control approach. In this approach, the time horizon of the original game is truncated, and a feedback Nash equilibrium of the dynamic game lasting only a limited planning horizon is determined and implemented at each decision stage. To demonstrate the influence diagram game and its aspects, examples with a realistic three-dimensional point mass aircraft model are computed and analyzed. The presented game model offers a novel way to analyze optimal air combat maneuvering and to develop an automated decision making system for selecting combat maneuvers in air combat simulators.
The sensitivity of NASA-TLX scale, modified Cooper-Harper (MCH) scale and the mean inter-beat interval (IBI) of successive heart beats, as measures of pilot mental workload (MWL), were evaluated in a flight training device (FTD). Operational F/A-18C pilots flew instrument approaches with varying task loads. Pilots' performance, subjective MWL ratings and IBI were measured. Based on the pilots' performance, three performance categories were formed; high-, medium- and low-performance. Values of the subjective rating scales and IBI were compared between categories. It was found that all measures were able to differentiate most task conditions and there was a strong, positive correlation between NASA-TLX and MCH scale. An explicit link between IBI, NASA-TLX, MCH and performance was demonstrated. While NASA-TLX, MCH and IBI have all been previously used to measure MWL, this study is the first one to investigate their association in a modern FTD, using a realistic flying mission and operational pilots.
We present a modeling and analysis approach that offers a way to generate preference optimal flight paths in one-on-one air combat. The pilot's sequential maneuvering decisions are modeled by a multistage influence diagram. The influence diagram graphically describes the elements of the decision process, contains a point-mass model for the dynamics of an aircraft and takes into account the decision maker's preferences under conditions of uncertainty. Optimal trajectories with respect to the given preference model are obtained by converting the multistage influence diagram into a discrete time dynamic optimization problem that is solved by nonlinear programming. The presented approach is illustrated by analyzing two one-on-one air combat scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.