We present an automatic approach for the semantic modeling of indoor scenes based on a single photograph, instead of relying on depth sensors. Without using handcrafted features, we guide indoor scene modeling with feature maps extracted by fully convolutional networks. Three parallel fully convolutional networks are adopted to generate object instance masks, a depth map, and an edge map of the room layout. Based on these high-level features, support relationships between indoor objects can be efficiently inferred in a data-driven manner.Constrained by the support context, a global-to-local model matching strategy is followed to retrieve the whole indoor scene. We demonstrate that the proposed method can efficiently retrieve indoor objects including situations where the objects are badly occluded. This approach enables efficient semantic-based scene editing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.