Background. Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal interstitial pneumonia disease with no cure. Communication between injured cells is triggered and maintained by a complicated network of cytokines and their receptors. IL-19 is supported by increasing evidences for a deleterious role in respiratory diseases. However, its potential role in lung fibrosis has never been explored. Methods. Bioinformatic, immunohistochemistry and western blot analysis were used to assess the expression of IL-19 in human and mouse fibrosis lung tissues. CCK-8, transwell and flow cytometry assay were utilized to analyze the effect of IL-19 on biological behaviors of lung fibroblasts. Histopathology was used to elucidate profibrotic effect of IL-19 in vivo. Results. IL-19 was upregulated in fibrosis lung tissues. IL-19 promoted lung fibroblasts proliferation and invasion, inhibited cell apoptosis, and induced differentiation of fibroblasts to the myofibroblast phenotype, which could be revised by LY2109761, a TGF-β/Smad signaling pathway inhibitor. Furthermore, we found that IL-19 aggravated lung fibrosis in murine bleomycin-induced lung fibrosis. Conclusions. Our results imply the profibrotic role for IL-19 through direct effects on lung fibroblasts and the potential of targeting IL-19 for therapeutic intervention in pulmonary fibrosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.