SUMMARYCerebral ischemia is a severe outcome that could cause cognitive and motor dysfunction, neurodegenerative diseases and even acute death. Although the existence of autophagy in cerebral ischemia is undisputable, the consensus has not yet been reached regarding the exact functions and influence of autophagy in cerebral ischemia. Whether the activation of autophagy is beneficial or harmful in cerebral ischemia injury largely depends on the balance between the burden of intracellular substrate targeted for autophagy and the capacity of the cellular autophagic machinery. Furthermore, the mechanisms underlying the autophagy in cerebral ischemia are far from clear yet. This brief review focuses on not only the current understanding of biological effects of autophagy, but also the therapeutic potentials of autophagy in ischemic stroke. There are disputes over the exact role of autophagy in cerebral ischemia. Application of chemical autophagy inhibitor (e.g., 3-methyladenine) or inducer (e.g., rapamycin) in vitro and in vivo was reported to protect or harm neuronal cell. Knockdown of autophagic protein, such as Beclin 1, was also reported to modulate the cerebral ischemia-induced injury. Moreover, autophagy inhibitor abolished the neuroprotection of ischemic preconditioning, implying a neuroprotective effect of autophagy. To clarify these issues on autophagy in cerebral ischemia, future investigations are warranted.
Autophagy, a highly conserved process conferring cytoprotection against stress, contributes to the progression of cerebral ischemia. β-arrestins are multifunctional proteins that mediate receptor desensitization and serve as important signaling scaffolds involved in numerous physiopathological processes. Here, we show that both ARRB1 (arrestin, β 1) and ARRB2 (arrestin, β 2) were upregulated by cerebral ischemic stress. Knockout of Arrb1, but not Arrb2, aggravated the mortality, brain infarction, and neurological deficit in a mouse model of cerebral ischemia. Accordingly, Arrb1-deficient neurons exhibited enhanced cell injury upon oxygen-glucose deprivation (OGD), an in vitro model of ischemia. Deletion of Arrb1 did not affect the cerebral ischemia-induced inflammation, oxidative stress, and nicotinamide phosphoribosyltransferase upregulation, but markedly suppressed autophagy and induced neuronal apoptosis/necrosis in vivo and in vitro. Additionally, we found that ARRB1 interacted with BECN1/Beclin 1 and PIK3C3/Vps34, 2 major components of the BECN1 autophagic core complex, under the OGD condition but not normal conditions in neurons. Finally, deletion of Arrb1 impaired the interaction between BECN1 and PIK3C3, which is a critical event for autophagosome formation upon ischemic stress, and markedly reduced the kinase activity of PIK3C3. These findings reveal a neuroprotective role for ARRB1, in the context of cerebral ischemia, centered on the regulation of BECN1-dependent autophagosome formation.
Posttraumatic stress disorder (PTSD) is a chronic impairment disorder that occurs after exposure to traumatic events. This disorder can result in a disturbance to individual and family functioning, causing significant medical, financial, and social problems. This study is a selective review of literature aiming to provide a general outlook of the current understanding of PTSD. There are several diagnostic guidelines for PTSD, with the most recent editions of the DSM-5 and ICD-11 being best accepted. Generally, PTSD is diagnosed according to several clusters of symptoms occurring after exposure to extreme stressors. Its pathogenesis is multifactorial, including the activation of the hypothalamic–pituitary–adrenal (HPA) axis, immune response, or even genetic discrepancy. The morphological alternation of subcortical brain structures may also correlate with PTSD symptoms. Prevention and treatment methods for PTSD vary from psychological interventions to pharmacological medications. Overall, the findings of pertinent studies are difficult to generalize because of heterogeneous patient groups, different traumatic events, diagnostic criteria, and study designs. Future investigations are needed to determine which guideline or inspection method is the best for early diagnosis and which strategies might prevent the development of PTSD.
Proteins accumulated in dry, stratified Arabidopsis seeds or young seedlings, totaled 1100 to 1300 depending on the time of sampling, were analyzed by using immobilized pH gradient 2-DE gel electrophoresis. The molecular identities of 437 polypeptides, encoded by 355 independent genes, were determined by MALDI-TOF or TOF-TOF mass spectrometry. In the sum, 293 were present at all stages and 95 were accumulated during the time of radicle protrusion while another 18 appeared in later stages. Further analysis showed that 226 of the identified polypeptides could be located in different metabolic pathways. Proteins involved in carbohydrate, energy and amino acid metabolism constituted to about 1/4, and those involved in metabolism of vitamins and cofactors constituted for about 3 % of the total signal intensity in gels prepared from 72 h seedlings. Enzymes related to genetic information processing increased very quickly during early imbibition and reached highest level around 30 h of germination.
Gout, a chronic inflammatory arthritis disease, is characterized by hyperuricemia and caused by interactions between genetic, epigenetic, and metabolic factors. Acute gout symptoms are triggered by the inflammatory response to monosodium urate crystals, which is mediated by the innate immune system and immune cells (e.g., macrophages and neutrophils), the NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome activation, and pro-inflammatory cytokine (e.g., IL-1β) release. Recent studies have indicated that the multiple programmed cell death pathways involved in the inflammatory response include pyroptosis, NETosis, necroptosis, and apoptosis, which initiate inflammatory reactions. In this review, we explore the correlation and interactions among these factors and their roles in the pathogenesis of gout to provide future research directions and possibilities for identifying potential novel therapeutic targets and enhancing our understanding of gout pathogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.