In order to improve the accuracy and stability of runoff prediction. This study proposed a dynamic model averaging method with Time-varying weight (TV-DMA). Using this method, an integrated prediction model framework for runoff prediction was constructed. The framework determines the main variables suitable for runoff prediction through correlation analysis, and uses TV-DMA and deep learning algorithm to construct an integrated prediction model for runoff. The results demonstrate that the current monthly runoff, the runoff of the previous month, the current monthly temperature, the temperature of the previous month and the current monthly rainfall were the variables suitable for runoff prediction. The results of runoff prediction show that the TV-DMA model has the highest prediction accuracy (with 0.97 Nash-efficiency coefficient (NSE)) and low uncertainty. The interval band of uncertainty was 33.3%-65.5% lower than single model. And the prediction performance of the single model and TV-DMA model in flood season is obviously lower than that in non-flood season. In addition, this study indicate that the current monthly runoff, rainfall and temperature are the important factor affecting the runoff prediction, which should be paid special attention in the runoff prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.