Background-Pulmonary arterial hypertension (PAH) is a progressive, fatal disease with no cure. Parenteral and inhaled prostacyclin analogue therapies are effective for the treatment of PAH, but complicated administration requirements can limit the use of these therapies in patients with less severe disease. This study was designed to evaluate the safety and efficacy of the oral prostacyclin analogue treprostinil diolamine as initial treatment for de novo PAH. Methods and Results-Three hundred forty-nine patients (intent-to-treat population) not receiving endothelin receptor antagonist or phosphodiesterase type-5 inhibitor background therapy were randomized (treprostinil, n=233; placebo, n=116). The primary analysis population (modified intent-to-treat) included 228 patients (treprostinil, n=151; placebo, n=77) with access to 0.25-mg treprostinil tablets at randomization. The primary end point was change from baseline in 6-minute walk distance at week 12. Secondary end points included Borg dyspnea index, clinical worsening, and symptoms of PAH. The week 12 treatment effect for 6-minute walk distance (modified intent-to-treat population) was 23.0 m (P=0.0125). For the intent-to-treat population, 6-minute walk distance improvements were observed at peak (26.0 m; P=0.0001) and trough (17.0 m; P=0.0025) plasma study drug concentrations. Other than an improvement in the combined 6-minute walk distance/Borg dyspnea score, there were no significant changes in secondary end points. Oral treprostinil therapy was generally well tolerated; the most common adverse events (intent-to-treat) were headache (69%), nausea (39%), diarrhea (37%), and pain in jaw (25%). Conclusions-Oral treprostinil improves exercise capacity in PAH patients
mTOR (the mechanistic target of rapamycin) is an atypical serine/threonine kinase involved in regulating major cellular functions including growth and proliferation. Deregulations of the mTOR signaling pathway is one of the most commonly observed pathological alterations in human cancers. To this end, oncogenic activation of the mTOR signaling pathway contributes to cancer cell growth, proliferation and survival, highlighting the potential for targeting the oncogenic mTOR pathway members as an effective anti-cancer strategy. In order to do so, a thorough understanding of the physiological roles of key mTOR signaling pathway components and upstream regulators would guide future targeted therapies. Thus, in this review, we summarize available genetic mouse models for mTORC1 and mTORC2 components, as well as characterized mTOR upstream regulators and downstream targets, and assign a potential oncogenic or tumor suppressive role for each evaluated molecule. Together, our work will not only facilitate the current understanding of mTOR biology and possible future research directions, but more importantly, provide a molecular basis for targeted therapies aiming at key oncogenic members along the mTOR signaling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.