Magnetic reconnection is a fundamental process of topology change and energy release, taking place in plasmas on the Sun, in space, in astrophysical objects and in the laboratory. However, observational evidence has been relatively rare and typically only partial. Here we present evidence of fast reconnection in a solar filament eruption using high-resolution H-alpha images from the New Vacuum Solar Telescope, supplemented by extreme ultraviolet observations. The reconnection is seen to occur between a set of ambient chromospheric fibrils and the filament itself. This allows for the relaxation of magnetic tension in the filament by an untwisting motion, demonstrating a flux rope structure. The topology change and untwisting are also found through nonlinear force-free field modelling of the active region in combination with magnetohydrodynamic simulation. These results demonstrate a new role for reconnection in solar eruptions: the release of magnetic twist.
Circular ribbon flares are usually related to spine-fan type magnetic topology containing null-points. In this paper, we investigate an X-class circular ribbon flare on 2012 October 23, using the multi-wavelength data from the Solar Dynamics Observatory, Hinode, and the Ramaty High Energy Solar Spectroscopic Imager. In Ca II H emission, the flare showed three ribbons with two highly elongated ones inside and outside a quasi-circular one, respectively. A hot channel was displayed in the extreme ultraviolet (EUV) emissions that infers the existence of a magnetic flux rope. Two hard X-ray (HXR) sources in the 12-25 keV energy band were located at the footpoints of this hot channel. Using a nonlinear forcefree magnetic field extrapolation, we identify three topological structures: (1) a 3D null-point, (2) a flux rope below the fan of the null-point, and (3) a large-scale quasi-separatrix layers (QSL) induced by the quadrupolar-like magnetic field of the active region. We find that the null-point is embedded within the large-scale QSL. In our case, all three identified topological structures must be considered to explain all the emission features associated with the observed flare. Besides, the HXR sources are regarded as the consequence of the reconnection within or near the border of the flux rope.3 In the other two cases, the eigenvalues are either complex or repeated. Both of them can also determine the skeleton structure (Parnell et al. 1996;Parnell et al. 1997).
In this paper, we report two homologous circular-ribbon flares associated with two filament eruptions. They were well observed by the New Vacuum Solar Telescope and the Solar Dynamics Observatory on 2014 March 5. Prior to the flare, two small-scale filaments enclosed by a circular pre-flare brightening lie along the circular polarity inversion line around the parasitic polarity, which has shown a continuous rotation since its first appearance. Two filaments eventually erupt in sequence associated with two homologous circular-ribbon flares and display an apparent writhing signature. Supplemented by the nonlinear force-free field extrapolation and the magnetic field squashing factor investigation, the following are revealed. (1) This event involves the emergence of magnetic flux ropes into a pre-existing polarity area, which yields the formation of a 3D null-point topology in the corona. (2) Continuous input of the free energy in the form of a flux rope from beneath the photosphere may drive a breakout-type reconnection occurring high in the corona, supported by the pre-flare brightening. (3) This initiation reconnection could release the constraint on the flux rope and trigger the MHD instability to first make filament F1 lose equilibrium. The subsequent more violent magnetic reconnection with the overlying flux is driven during the filament rising. In return, the eruption of filament F2 is further facilitated by the reduction of the magnetic tension force above. These two processes form a positive feedback to each other to cause the energetic mass eruption and flare.
It is well accepted that a magnetic flux rope (MFR) is a critical component of many coronal mass ejections (CMEs), yet how it evolves toward eruption remains unclear. Here we investigate the continuous evolution of a pre-existing MFR, which is rooted in strong photospheric magnetic fields and electric currents. The evolution of the MFR is observed by the Solar Terrestrial Relations Observatory (STEREO) and the Solar Dynamics Observatory (SDO) from multiple viewpoints. From STEREO's perspective, the MFR starts to rise slowly above the limb five hours before it erupts as a halo CME on 2012 June 14. In SDO observations, conjugate dimmings develop on the disk, simultaneously with the gradual expansion of the MFR, suggesting that the dimmings map the MFR's feet. The evolution comprises a two-stage gradual expansion followed by another stage of rapid acceleration/eruption. Quantitative measurements indicate that magnetic twist of the MFR increases from 1.0 ± 0.5 to 2.0 ± 0.5 turns during the five-hour expansion, and further increases to about 4.0 turns per AU when detected as a magnetic cloud at 1 AU two day later. In addition, each stage is preceded by flare(s), implying reconnection is actively involved in the evolution and 2 Wang et al.eruption of the MFR. The implications of these measurements on the CME initiation mechanisms are discussed.
It is important to study the fine structures of solar filaments with highresolution observations since it can help us understand the magnetic and thermal structures of the filaments and their dynamics. In this paper, we study a newly-formed filament located inside the active region NOAA 11762, which was observed by the 1.6 m New Solar Telescope (NST) at Big Bear Solar Observatory (BBSO) from 16:40:19 UT to 17:07:58 UT on 2013 June 5. As revealed by the Hα filtergrams, cool material is seen to be injected into the filament spine with a speed of 5-10 km s −1 . At the source of the injection, brightenings are identified in the chromosphere, which is accompanied by magnetic cancellation in the photosphere, implying the importance of magnetic reconnection in replenishing the filament with plasmas from the lower atmosphere. Counter-streamings are detected near one endpoint of the filament, with the plane-of-the-sky speed being 7-9 km s −1 in the Hα red-wing filtergrams and 9-25 km s −1 in the blue-wing filtergrams. The observations are indicative of that this active region filament is supported by a sheared arcade without magnetic dips, and the counter-streamings are due to unidirectional flows with alternative directions, rather than due to the longitudinal oscillations of filament threads as in many other filaments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.