Rydberg-atom electrometers promise traceable standards for RF electrometry by enabling stable and uniform measurement. In this Letter, we propose an approach to increase the sensitivity of the Rydberg-atom electrometer for far-detuned RF field sensing. The key physical mechanism is the addition of a new ingredient—a local RF field near-resonant with a Rydberg transition—so that the far-detuned field can be detected by the shift of an Autler–Townes (AT) splitting peak, which can be dozens of times larger than the AC Stark shift of the electromagnetic induced transparency (EIT) signal without the near-resonant field. The method enables us to measure far-detuned fields with higher sensitivities, including sub-GHz RF fields (even DC electric fields) which are rarely involved in the existing sensitivity enhancement methods.
Rydberg atom-based sensors using the atomic heterodyne technique demonstrate prominent performance on sensing sensitivity and thus have significant potential for radar, electronic reconnaissance, and communication applications. Here, we propose a local oscillator (LO) embedded field enhancement resonator to improve the sensitivity and integration of Rydberg atomic heterodyne sensors. In this approach, a vapor cell filled with cesium atoms is placed into the resonance structure for electric (E) field measurements. By integrating parallel-plate waveguide (PPWG) antennas and the resonator, the LO signal can be directly guided to the resonator using coaxial cable instead of the use of external antennas radiating through free space, allowing for a more flexible and practical Rydberg atom-based heterodyne technique. Based on the off-resonant Rydberg atomic heterodyne approach, for a radio frequency (RF) signal at 638 MHz, it is found that the sensitivity is 43 μV/cm$\sqrt{\text{Hz}}$
Hz
in the absence of the resonator, while in the presence of our resonator, the sensitivity is down to 854.36 nV/cm$\sqrt{\text{Hz}}$
Hz
, indicating 50 times or 34 dB improvement capacity of the proposed resonator. This type of enhancement resonator is expected to benefit Rydberg atomic heterodyne applications in practical environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.