During the production process of commercial carbon fiber reinforced polymers (CFRPs), a silane coupling agent is added to the carbon fiber at the sizing step as a binder to enhance the product’s physical properties. While improving strength, the silane coupling agent results in a silane residue on recovered carbon fibers (rCF) after recycling, which is a disadvantage when using recovered carbon fibers in the manufacture of new materials. In this study, the rCF is recovered from waste carbon fiber reinforced polymers (CFRPs) from the bicycle industry by a microwave pyrolysis method, applying a short reaction time and in an air atmosphere. Moreover, the rCF are investigated for their surface morphologies and the elements present on the surface. The silicon element content changes with pyrolysis temperature were 0.4, 0.9, and 0.2%, respectively, at 450, 550, and 650 °C. Additionally, at 950 °C, silicon content can be reduced to 0.1 ± 0.05%. The uniformity of microwave pyrolysis recycle treatment was compared with traditional furnace techniques used for bulk waste treatment by applying the same temperature regime. This work provides evidence that microwave pyrolysis can be used as an alternative method for the production of rCFs for reuse applications.
This study describes a method for fabricating a superhydrophobic surface on glass via a colloidal deposition technique based on solvent evaporation-induced aggregation. Silica nanoparticles with a low grafting density of long-chain poly-(cyclohexyl methacrylate) (PCH) were dispersed in a binary solvent system consisting of tetrahydrofuran (THF) and methanol (MeOH) with an azeotropic point and the nonfluorinated and hydrophobic PCHMA having a solubility parameter similar to that of THF. In the early stages of evaporation, the binary mixtures tend to induce the aggregation of PCH-NP due to the azeotropic point of the solvent components, leading to the formation of surface structures ranging from smooth to rough on the substrate. By adjusting the initial ratio of the binary solvents, a superhydrophobic coating with a water contact angle of 154 ± 2°and a sliding angle of less than 10°was achieved at a THF content of 60 wt %. This facile approach using azeotropes successfully shows that changes in the solvent composition of the binary solvent system during evaporation can be used to prepare superhydrophobic coatings with well-controlled surface structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.